§ 140.5

end of Houghtaling Island and on the south by a line between the Village of Roseton on the western shore and Low Point on the eastern shore in the vicinity of Chelsea, as described in Items 2 and 3 of 6 NYCRR Part 858.4.

[41 FR 4453, Jan. 29, 1976, as amended at 42 FR 43837, Aug. 31, 1977; 60 FR 63945, Dec. 13, 1995]

§140.5 Analytical procedures.

In determining the composition and quality of effluent discharge from marine sanitation devices, the procedures contained in 40 CFR part 136, "Guidelines Establishing Test Procedures for the Analysis of Pollutants," or subsequent revisions or amendments thereto, shall be employed.

PART 141—NATIONAL PRIMARY DRINKING WATER REGULATIONS

Subpart A-General

Sec.

- 141.1 Applicability.
- 141.2 Definitions.
- 141.3 Coverage.
- 141.4 Variances and exemptions.
- 141.5 Siting requirements.
- 141.6 Effective dates.

Subpart B-Maximum Contaminant Levels

- 141.11 Maximum contaminant levels for inorganic chemicals.
- 141.12 Maximum contaminant levels for organic chemicals.
- 141.13 Maximum contaminant levels for turbidity.
- 141.15 Maximum contaminant levels for radium-226, radium-228, and gross alpha particle radioactivity in community water systems.
- 141.16 Maximum contaminant levels for beta particle and photon radioactivity from man-made radionuclides in community water systems.

Subpart C-Monitoring and Analytical Requirements

- 141.21 Coliform sampling.
- 141.22 Turbidity sampling and analytical requirements.
- 141.23 Inorganic chemical sampling and analytical requirements.
- 141.24 Organic chemicals other than total trihalomethanes, sampling and analytical requirements.
- 141.25 Analytical methods for radioactivity.

141.26 Monitoring frequency for radioactivity in community water systems.

141.27 Alternate analytical techniques.

- 141.81 Applicability of corrosion control treatment steps to small, medium-size and large water systems.
- 141.82 Description of corrosion control treatment requirements.
- 141.83 Source water treatment requirements.
- 141.84 Lead service line replacement requirements.
- 141.85 Public education and supplemental monitoring requirements.
- 141.86 Monitoring requirements for lead and copper in tap water.
- 141.87 Monitoring requirements for water quality parameters.
- 141.88 Monitoring requirements for lead and copper in source water.
- 141.89 Analytical methods.
- 141.90 Reporting requirements.
- 141.91 Recordkeeping requirements.

Subpart J—Use of Non-Centralized Treatment Devices

- 141.100 Criteria and procedures for public water systems using point-of-entry devices.
- $141.101\,$ Use of other non-centralized treatment devices.

Subpart K—Treatment Techniques

- 141.110 General requirements.
- 141.111 Treatment techniques for acrylamide and epichlorohydrin.

Subpart M—Information Collection Requirements (ICR) for Public Water Systems

- 141.140 Definitions specific to subpart M.
- 141.141 General requirements, applicability, and schedule for information collection.
- 141.142 Disinfection byproduct and related monitoring.
- 141.143 Microbial monitoring.
- 141.144 Disinfection byproduct precursor removal studies.

AUTHORITY: 42 U.S.C. 300f, 300g-1, 300g-2, 300g-3, 300g-4, 300g-5, 300g-6, 300j-4, and 300j-9

Source: 40 FR 59570, Dec. 24, 1975, unless otherwise noted.

NOTE: For community water systems serving 75,000 or more persons, monitoring must begin 1 year following promulation and the effective date of the MCL is 2 years following promulgation. For community water systems serving 10,000 to 75,000 persons, monitoring must begin within 3 years from the date of promulgation and the effective date of the MCL is 4 years from the date of promulgation. Effective immediately, systems that plan to make significant modifications to their treatment processes for the purpose of complying with the TTHM MCL are re-

quired to seek and obtain State approval of their treatment modification plans. This note affects §§ 141.2, 141.6, 141.12, 141.24 and 141.30. For additional information see 44 FR 68641. Nov. 29. 1979.

Subpart A—General

§141.1 Applicability.

This part establishes primary drinking water regulations pursuant to section 1412 of the Public Health Service Act, as amended by the Safe Drinking Water Act (Pub. L. 93-523); and related regulations applicable to public water systems.

§141.2 Definitions.

As used in this part, the term:

Act means the Public Health Service Act, as amended by the Safe Drinking Water Act, Public Law 93–523.

Action level, is the concentration of lead or copper in water specified in §141.80(c) which determines, in some cases, the treatment requirements contained in subpart I of this part that a water system is required to complete.

Best available technology or BAT means the best technology, treatment techniques, or other means which the Administrator finds, after examination for efficacy under field conditions and not solely under laboratory conditions, are available (taking cost into consideration). For the purposes of setting MCLs for synthetic organic chemicals, any BAT must be at least as effective as granular activated carbon.

Coagulation means a process using coagulant chemicals and mixing by which colloidal and suspended materials are destabilized and agglomerated into flocs

Community water system means a public water system which serves at least 15 service connections used by year-round residents or regularly serves at least 25 year-round residents.

Compliance cycle means the nine-year calendar year cycle during which public water systems must monitor. Each compliance cycle consists of three three-year compliance periods. The first calendar year cycle begins January 1, 1993 and ends December 31, 2001; the second begins January 1, 2002 and ends December 31, 2010; the third begins

January 1, 2011 and ends December 31, 2019

Compliance period means a three-year calendar year period within a compliance cycle. Each compliance cycle has three three-year compliance periods. Within the first compliance cycle, the first compliance period runs from January 1, 1993 to December 31, 1995; the second from January 1, 1996 to December 31, 1998; the third from January 1, 1999 to December 31, 2001.

Confluent growth means a continuous bacterial growth covering the entire filtration area of a membrane filter, or a portion thereof, in which bacterial colonies are not discrete.

Contaminant means any physical, chemical, biological, or radiological substance or matter in water.

Conventional filtration treatment means a series of processes including coagulation, flocculation, sedimentation, and filtration resulting in substantial particulate removal.

Corrosion inhibitor means a substance capable of reducing the corrosivity of water toward metal plumbing materials, especially lead and copper, by forming a protective film on the interior surface of those materials.

CT or CTcalc is the product of "residual disinfectant concentration" (C) in mg/1 determined before or at the first customer, and the corresponding "disinfectant contact time" (T) in minutes, i.e., "C" x "T". If a public water system applies disinfectants at more than one point prior to the first customer, it must determine the CT of each disinfectant sequence before or at the first customer to determine the total percent inactivation or "total inactivation ratio." In determining the total inactivation ratio, the public water system must determine the residual disinfectant concentration of each disinfection sequence and corresponding contact time before any subsequent disinfection application point(s). " $CT_{99.9}$ " is the CT value required for 99.9 percent (3-log) inactivation of Giardia lamblia cysts. CT99.9 for a variety of disinfectants and conditions appear in Tables 1.1-1.6, 2.1, and 3.1 of § 141.74(b)(3).

is the inactivation ratio. The sum of the inactivation ratios, or total inactivation ratio shown as

$$\Sigma \frac{\text{(CTcalc)}}{\text{(CT}_{99.9})}$$

is calculated by adding together the inactivation ratio for each disinfection sequence. A total inactivation ratio equal to or greater than 1.0 is assumed to provide a 3-log inactivation of *Giardia lamblia* cysts.

Diatomaceous earth filtration means a process resulting in substantial particulate removal in which (1) a precoat cake of diatomaceous earth filter media is deposited on a support membrance (septum), and (2) while the water is filtered by passing through the cake on the septum, additional filter media known as body feed is continuously added to the feed water to maintain the permeability of the filter cake.

Direct filtration means a series of processes including coagulation and filtration but excluding sedimentation resulting in substantial particulate removal.

Disinfectant means any oxidant, including but not limited to chlorine, chlorine dioxide, chloramines, and ozone added to water in any part of the treatment or distribution process, that is intended to kill or inactivate pathogenic microorganisms.

Disinfectant contact time ("T" in CT calculations) means the time in minutes that it takes for water to move from the point of disinfectant application or the previous point of disinfectant residual measurement to a point before or at the point where residual disinfectant concentration ("C") is measured. Where only one "C" is measured, "T" is the time in minutes that it takes for water to move from the point of disinfectant application to a point before or at where residual disinfectant concentration ("C") is measured. Where more than one "C" is measured, "T" is (a) for the first measurement of "C", the time in minutes that it takes for water to move from

the first or only point of disinfectant application to a point before or at the point where the first "C" is measured and (b) for subsequent measurements of "C", the time in minutes that it takes for water to move from the previous "C" measurement point to the "C" measurement point for which the particular "T" is being calculated. Disinfectant contact time in pipelines must be calculated based on "plug flow" by dividing the internal volume of the pipe by the maximum hourly flow rate through that pipe. Disinfectant contact time within mixing basins and storage reservoirs must be determined by tracer studies or an equivalent demonstration.

Disinfection means a process which inactivates pathogenic organisms in water by chemical oxidants or equivalent agents.

Domestic or other non-distribution system plumbing problem means a coliform contamination problem in a public water system with more than one service connection that is limited to the specific service connection from which the coliform-positive sample was taken.

Dose equivalent means the product of the absorbed dose from ionizing radiation and such factors as account for differences in biological effectiveness due to the type of radiation and its distribution in the body as specified by

Man-made beta particle and photon emitters means all radionuclides emitting beta particles and/or photons listed in Maximum Permissible Body Burdens and Maximum Permissible Concentration of Radionuclides in Air or Water for Occupational Exposure, NBS Handbook 69, except the daughter products of thorium-232, uranium-235 and uranium-238.

Maximum contaminant level means the maximum permissable level of a contaminant in water which is delivered to any user of a public water system.

Maximum contaminant level goal or MCLG means the maximum level of a contaminant in drinking water at which no known or anticipated adverse effect on the health of persons would occur, and which allows an adequate margin of safety. Maximum contaminant level goals are nonenforceable health goals.

Maximum Total Trihalomethane Potential (MTP) means the maximum concentration of total trihalomethanes produced in a given water containing a disinfectant residual after 7 days at a temperature of 25° C or above.

Medium-size water system, for the purpose of subpart I of this part only, means a water system that serves greater than 3,300 and less than or equal to 50,000 persons.

Near the first service connection means at one of the 20 percent of all service connections in the entire system that are nearest the water supply treatment facility, as measured by water transport time within the distribution system.

Non-community water system means a public water system that is not a community water system.

Non-transient non-community water system or NTNCWS means a public water system that is not a community water system and that regularly serves at least 25 of the same persons over 6 months per year.

Optimal corrosion control treatment, for the purpose of subpart I of this part only, means the corrosion control treatment that minimizes the lead and copper concentrations at users' taps while insuring that the treatment does not cause the water system to violate any national primary drinking water regulations. Performance evaluation sample means

§ 141.3

Repeat compliance period means any subsequent compliance period after the initial compliance period.

Residual disinfectant concentration ("C" in CT calculations) means the concentration of disinfectant measured in mg/l in a representative sample of water.

Sanitary survey means an onsite review of the water source, facilities, equipment, operation and maintenance of a public water system for the purpose of evaluating the adequacy of such source, facilities, equipment, operation and maintenance for producing and distributing safe drinking water.

Sedimentation means a process for removal of solids before filtration by gravity or separation.

Service line sample means a one-liter

any collection and treatment facilities);

- (b) Obtains all of its water from, but is not owned or operated by, a public water system to which such regulations apply:
- (c) Does not sell water to any person; and
- (d) Is not a carrier which conveys passengers in interstate commerce.

§141.4 Variances and exemptions.

- (a) Variances or exemptions from certain provisions of these regulations may be granted pursuant to sections 1415 and 1416 of the Act by the entity with primary enforcement responsibility, except that variances or exemptions from the MCL for total coliforms and variances from any of the treatment technique requirements of subpart H of this part may not be granted.
- (b) EPA has stayed the effective date of this section relating to the total coliform MCL of §141.63(a) for systems that demonstrate to the State that the violation of the total coliform MCL is due to a persistent growth of total coliforms in the distribution system rather than fecal or pathogenic contamination, a treatment lapse or deficiency, or a problem in the operation or maintenance of the distribution system.

[54 FR 27562, June 29, 1989, as amended at 56 FR 1557, Jan. 15, 1991]

§141.5 Siting requirements.

Before a person may enter into a financial commitment for or initiate construction of a new public water system or increase the capacity of an existing public water system, he shall notify the State and, to the extent practicable, avoid locating part or all of the new or expanded facility at a site which:

- (a) Is subject to a significant risk from earthquakes, floods, fires or other disasters which could cause a breakdown of the public water system or a portion thereof; or
- (b) Except for intake structures, is within the floodplain of a 100-year flood or is lower than any recorded high tide where appropriate records exist. The U.S. Environmental Protection Agency will not seek to override land use decisions affecting public water systems siting which are made

at the State or local government levels.

§141.6 Effective dates.

- (a) Except as provided in paragraphs (a) through (i) of this section, and in §141.80(a)(2), the regulations set forth in this part shall take effect on June 24, 1977.
- (b) The regulations for total trihalomethanes set forth in §141.12(c) shall take effect 2 years after the date of promulgation of these regulations for community water systems serving 75,000 or more individuals, and 4 years after the date of promulgation for communities serving 10,000 to 74,999 individuals.
- (c) The regulations set forth in §§141.11 (a), (d) and (e); 141.14(a)(1); 141.14(b)(1)(i); 141.14(b)(2)(i); 141.14(d); 141.21 (a), (c) and (i); 141.22 (a) and (e); 141.23 (a)(3) and (a)(4); 141.23(f); 141.24(a)(3); 141.24 (e) and (f); 141.25(e); 141.27(a); 141.28 (a) and (b); 141.31 (a), (d) and (e); 141.32(b)(3); and 141.32(d) shall take effect immediately upon promulgation.
- (d) The regulations set forth in §141.41 shall take effect 18 months from the date of promulgation. Suppliers must complete the first round of sampling and reporting within 12 months following the effective date.
- (e) The regulations set forth in §141.42 shall take effect 18 months from the date of promulgation. All requirements in §141.42 must be completed within 12 months following the effective date.
- (f) The regulations set forth in $\boldsymbol{\S}$

measuring antimony, beryllium, cyanide, nickel, and thallium are effective August 17, 1992. Regulations for the analytic methods listed at §141.24(f)(16) for dichloromethane, 1,2,4-trichlorobenzene, and 1,1,2-trichloroethane are effective August 17, 1992. Regulations for the analytic methods listed at §141.24(h)(12) for measuring dalapon, dinoseb, diquat, endothall, endrin, picloram, glyphosate, oxamyl, benzo(a)pyrene, simazine, di (2ethylhexyl)adipate, ethylhexyl)phthalate, hexachlorobenzene, hexachlorocyclopentadiene, and 2,3,7,8-TCDD are effective August 17, 1992. The revision to §141.12(a) promulgated on July 17, 1992 is effective on August 17, 1992.

(i) Regulations for information collection requirements listed in Subpart M are effective August 14, 1996, and shall remain effective until December 31, 2000.

[44 FR 68641, Nov. 29, 1979, as amended at 45 FR 57342, Aug. 27, 1980; 47 FR 10998, Mar. 12, 1982; 51 FR 11410, Apr. 2, 1986; 56 FR 30274, July 1, 1991; 57 FR 22178, May 27, 1992; 57 FR 31838, July 17, 1992; 59 FR 34322, July 1, 1994; 61 FR 24368, May 14, 1996]

EFFECTIVE DATE NOTE: At 61 FR 24368, May 14, 1996, §141.6 is amended in paragraph (a) by revising the reference "(a) through (h)" to read "(a) through (i)" and by adding paragraph (i), effective June 18, 1996 and will expire on Dec. 31, 2000.

Subpart B—Maximum Contaminant Levels

§141.11 Maximum contaminant levels for inorganic chemicals.

(a) The maximum contaminant level for arsenic applies only to community water systems. Compliance with the MCL for arsenic is calculated pursuant

turbidity in drinking water, measured at a representative entry point(s) to the distribution system, are:

EDITORIAL NOTE: At 54 FR 27527, June 29, 1988, §141.13 was amended by adding introductory text, effective December 31, 1990. This section already contains an introductory text.

The requirements in this section apply to unfiltered systems until December 30, 1991, unless the State has determined prior to that date, in writing pursuant to \$1412(b)(7)(C)(iii), that filtration is required. The requirements in this section apply to filtered systems until June 29, 1993. The requirements in this section apply to unfiltered systems that the State has determined, in writing pursuant to \$1412(b)(7)(C)(iii), must install filtration, until June 29, 1993, or until filtration is installed, whichever is later.

- (a) One turbidity unit (TU), as determined by a monthly average pursuant to §141.22, except that five or fewer turbidity units may be allowed if the supplier of water can demonstrate to the State that the higher turbidity does not do any of the following:
 - (1) Interfere with disinfection;
- (2) Prevent maintenance of an effective disinfectant agent throughout the distribution system; or
- (3) Interfere with microbiological determinations.
- (b) Five turbidity units based on an average for two consecutive days pursuant to §141.22.

[40 FR 59570, Dec. 24, 1975]

§141.15 Maximum contaminant levels for radium-226, radium-228, and gross alpha particle radioactivity in community water systems.

The following are the maximum contaminant levels for radium-226, radium-228, and gross alpha particle radioactivity:

- (a) Combined radium-226 and radium-228—5 pCi/1.
- (b) Gross alpha particle activity (including radium-226 but excluding radon and uranium)—15 pCi/1.

[41 FR 28404, July 9, 1976]

§141.16 Maximum contaminant levels for beta particle and photon radioactivity from man-made radionuclides in community water systems.

- (a) The average annual concentration of beta particle and photon radioactivity from man-made radionuclides in drinking water shall not produce an annual dose equivalent to the total body or any internal organ greater than 4 millirem/year.
- (b) Except for the radionuclides listed in Table A, the concentration of

Environmental Protection Agency

TOTAL COLIFORM MONITORING FREQUENCY FOR COMMUNITY WATER SYSTEMS

Population served	Minimum number of sam- ples per month
25 to 1,000 ¹	1
1,001 to 2,500	2
2,501 to 3,300	3
3,301 to 4,100	4
4,101 to 4,900	5
4,901 to 5,800	6
5,801 to 6,700	7
6,701 to 7,600	8
7.601 to 8.500	9
8,501 to 12,900	10
12.901 to 17.200	15
17.201 to 21.500	20
21,501 to 25,000	25
25,001 to 33,000	30
33,001 to 41,000	40
41,001 to 50,000	50
50,001 to 59,000	60
59,001 to 70,000	70
70,001 to 83,000	80
83,001 to 96,000	90
96,001 to 130,000	100
130,001 to 220,000	120
220,001 to 320,000	150
320,001 to 450,000	180
450.001 to 600.000	210
600,001 to 780,000	240
780,001 to 970,000	270
970,001 to 1,230,000	300
1,230,001 to 1,520,000	330
1,520,001 to 1,850,000	360
1,850,001 to 2,270,000	390
2,270,001 to 3,020,000	420
3,020,001 to 3,960,000	450
3,960,001 or more	480

¹Includes public water systems which have at least 15 service connections, but serve fewer than 25 persons.

If a community water system serving

on a single day if they are taken from different sites.

- (5) A public water system that uses surface water or ground water under the direct influence of surface water, as defined in §141.2, and does not practice filtration in compliance with Subpart H must collect at least one sample near the first service connection each day the turbidity level of the source water, measured as specified in §141.74(b)(2), exceeds 1 NTU. This sample must be analyzed for the presence of total coliforms. When one or more turbidity measurements in any day exceed 1 NTU, the system must collect this coliform sample within 24 hours of the first exceedance, unless the State determines that the system, for logistical reasons outside the system's control, cannot have the sample analyzed within 30 hours of collection. Sample results from this coliform monitoring must be included in determining compliance with the MCL for total coliforms in §141.63.
- (6) Special purpose samples, such as those taken to determine whether disinfection practices are sufficient following pipe placement, replacement, or repair, shall not be used to determine compliance with the MCL for total coliforms in §141.63. Repeat samples taken pursuant to paragraph (b) of this section are not considered special purpose samples, and must be used to determine compliance with the MCL for total coliforms in §141.63.
- (b) Repeat monitoring. (1) If a routine sample is total coliform-positive, the public water system must collect a set of repeat samples within 24 hours of being notified of the positive result. A system which collects more than one routine sample/month must collect no fewer than three repeat samples for each total coliform-positive sample found. A system which collects one routine sample/month or fewer must collect no fewer than four repeat samples for each total coliform-positive sample found. The State may extend the 24-hour limit on a case-by-case basis if the system has a logistical problem in collecting the repeat samples within 24 hours that is beyond its control. In the case of an extension, the State must specify how much time

the system has to collect the repeat samples.

- (2) The system must collect at least one repeat sample from the sampling tap where the original total coliformpositive sample was taken, and at least one repeat sample at a tap within five service connections upstream and at least one repeat sample at a tap within five service connections downstream of the original sampling site. If a total coliform-positive sample is at the end of the distribution system, or one away from the end of the distribution system, the State may waive the requirement to collect at least one repeat sample upstream or downstream of the original sampling site.
- (3) The system must collect all repeat samples on the same day, except that the State may allow a system with a single service connection to collect the required set of repeat samples over a four-day period or to collect a larger volume repeat sample(s) in one or more sample containers of any size, as long as the total volume collected is at least 400 ml (300 ml for systems which collect more than one routine sample/month).
- (4) If one or more repeat samples in the set is total coliform-positive, the public water system must collect an additional set of repeat samples in the manner specified in paragraphs (b)(1)-(3) of this section. The additional samples must be collected within 24 hours of being notified of the positive result, unless the State extends the limit as provided in paragraph (b)(1) of this section. The system must repeat this process until either total coliforms are not detected in one complete set of repeat samples or the system determines

that the MCL for total coliforms in

§141.63 has been exceeded and notifies

(5) If a system collecting fewer than five routine samples/month has one or more total coliform-positive samples and the State does not invalidate the sample(s) under paragraph (c) of this section, it must collect at least five routine samples during the next month the system provides water to the public, except that the State may waive this requirement if the conditions of paragraph (b)(5) (i) or (ii) of this section are met. The State cannot waive

the State.

the requirement for a system to collect repeat samples in paragraphs (b)(1)-(4) of this section.

(i) The State may waive the requirement to collect five routine samples the next month the system provides water to the public if the State, or an agent approved by the State, performs a site visit before the end of the next month the system provides water to the public. Although a sanitary survey need not be performed, the site visit must be sufficiently detailed to allow the State to determine whether additional monitoring and/or any corrective action is needed. The State cannot approve an employee of the system to perform this site visit, even if the employee is an agent approved by the State to perform sanitary surveys.

(ii) The State may waive the requirement to collect five routine samples the next month the system provides water to the public if the State has determined why the sample was total coliform-positive and establishes that the system has corrected the problem or will correct the problem before the end of the next month the system serves water to the public. In this case, the State must document this decision to waive the following month's additional monitoring requirement in writing, have it approved and signed by the supervisor of the State official who recommends such a decision, and make this document available to the EPA and public. The written documentation must describe the specific cause of the total coliform-positive sample and what action the system has taken and/ or will take to correct this problem. The State cannot waive the requirement to collect five routine samples the next month the system provides water to the public solely on the grounds that all repeat samples are total coliform-negative. Under this paragraph, a system must still take at least one routine sample before the end of the next month it serves water to the public and use it to determine compliance with the MCL for total coliforms in §141.63, unless the State has determined that the system has corrected the contamination problem before the system took the set of repeat samples required in paragraphs (b)(1)-

(4) of this section, and all repeat samples were total coliform-negative.

(6) After a system collects a routine sample and before it learns the results of the analysis of that sample, if it collects another routine sample(s) from within five adjacent service connections of the initial sample, and the initial sample, after analysis, is found to contain total coliforms, then the system may count the subsequent sample(s) as a repeat sample instead of as a routine sample.

(7) Results of all routine and repeat samples not invalidated by the State must be included in determining compliance with the MCL for total coli-

forms in §141.63.

- (c) Invalidation of total coliform samples. A total coliform-positive sample invalidated under this paragraph (c) does not count towards meeting the minimum monitoring requirements of this section. (1) The State may invalidate a total coliform-positive sample only if the conditions of paragraph (c)(1)(i), (ii), or (iii) of this section are met.
- (i) The laboratory establishes that improper sample analysis caused the total coliform-positive result.
- (ii) The State, on the basis of the results of repeat samples collected as required by paragraphs (b) (1) through (4) of this section, determines that the total coliform-positive sample resulted from a domestic or other non-distribution system plumbing problem. The State cannot invalidate a sample on the basis of repeat sample results unless all repeat sample(s) collected at the same tap as the original total coliform-positive sample are also total coliform-positive, and all repeat samples collected within five service connections of the original tap are total coliform-negative (e.g., a State cannot invalidate a total coliform-positive sample on the basis of repeat samples if all the repeat samples are total coliform-negative, or if the public water system has only one service connection).

(iii) The State has substantial grounds to believe that a total coliform-positive result is due to a circumstance or condition which does not reflect water quality in the distribution system. In this case, the system

must still collect all repeat samples required under paragraphs (b) (1)-(4) of this section, and use them to determine compliance with the MCL for total coliforms in §141.63. To invalidate a total coliform-positive sample under this paragraph, the decision with the rationale for the decision must be documented in writing, and approved and signed by the supervisor of the State official who recommended the decision. The State must make this document available to EPA and the public. The written documentation must state the specific cause of the total coliformpositive sample, and what action the system has taken, or will take, to correct this problem. The State may not invalidate a total coliform-positive sample solely on the grounds that all repeat samples are total coliform-negative.

(2) A laboratory must invalidate a total coliform sample (unless total coliforms are detected) if the sample produces a turbid culture in the absence of gas production using an analytical method where gas formation is examined (e.g., the Multiple-Tube Fermentation Technique), produces a turbid culture in the absence of an acid reaction in the Presence-Absence (P-A) Coliform Test, or exhibits confluent growth or produces colonies too numerous to count with an analytical method using a membrane filter (e.g., Mem-

- (f) Analytical methodology. (1) The standard sample volume required for total coliform analysis, regardless of analytical method used, is 100 ml.
- (2) Public water systems need only determine the presence or absence of total coliforms; a determination of total coliform density is not required.
- (3) Public water systems must conduct total coliform analyses in accordance with one of the analytical methods in the following table. These methods are contained in the 18th edition of Standard Methods for the Examination of Water and Wastewater, 1992, American Public Health Association, 1015 Fifteenth Street NW., Washington, DC 20005. A description of the Colisure Test may be obtained from the Millipore Corporation, Technical Services Department, 80 Ashby Road, Bedford, MA 01730. The toll-free phone number is (800) 645–5476.

Organism	Methodology	Citation
Organism	Methodology	Citation

light (366 nm) in the dark after incubating tube at 44.5 \pm 0.2 °C for 24 \pm 2 hours; or

(ii) Nutrient agar supplemented with 100 μg/ml 4-methylumbelliferyl-beta-Dglucuronide (MUG) (final concentration). Nutrient Agar is described in the 18th edition of Standard Methods for the Examination of Water and Wastewater, 1992, p. 9-47 to 9-48. This test is used to determine if a total coliform-positive sample, as determined by the Membrane Filter Technique or any other method in which a membrane filter is used, contains $\it E.~coli.$ Transfer the membrane filter containing a total coliform colony(ies) to nutrient agar supplemented with 100 µg/ml (final concentration) of MUG. After incubating the agar plate at 35 °C for 4 hours, observe the colony(ies) under ultraviolet light (366 nm) in the dark for fluorescence. If fluorescence is visible, E. coli are present.

(iii) Minimal Medium ONPG-MUG (MMO-MUG) Test, as set forth in the article "National Field Evaluation of a Defined Substrate Method for the Simultaneous Detection of Total Coliforms and *Escherichia coli*

the monitoring violation to the State within ten days after the system discovers the violation, and notify the public in accordance with §141.32.

[54 FR 27562, June 29, 1989, as amended at 54 FR 30001, July 17, 1989; 55 FR 25064, June 19, 1990; 56 FR 642, Jan. 8, 1991; 57 FR 1852, Jan. 15, 1992; 57 FR 24747, June 10, 1992; 59 FR 62466, Dec. 5, 1994; 60 FR 34085, June 29, 1995]

§141.22 Turbidity sampling and analytical requirements.

The requirements in this section apply to unfiltered systems until December 30, 1991, unless the State has determined prior to that date, in writing pursuant to section 1412(b)(7)(iii), that filtration is required. The requirements in this section apply to filtered systems until June 29, 1993. The requirements in this section apply to unfiltered systems that the State has determined, in writing pursuant to section 1412(b)(7)(C)(iii), must install filtration, until June 29, 1993, or until filtration is installed, whichever is later.

(a) Samples shall be taken by suppliers of water for both community and non-community water systems at a representative entry point(s) to the water distribution system at least once per day, for the purposes of making turbidity measurements to determine compliance with §141.13. If the State determines that a reduced sampling frequency in a non-community will not pose a risk to public health, it can reduce the required sampling frequency. The option of reducing the turbidity frequency shall be permitted only in those public water systems that practice disinfection and which maintain an active residual disinfectant in the distribution system, and in those cases where the State has indicated in writing that no unreasonable risk to health existed under the circumstances of this option. Turbidity measurements shall be made as directed in §141.74(a)(1).

(b) If the result of a turbidity analysis indicates that the maximum allowable limit has been exceeded, the sampling and measurement shall be confirmed by resampling as soon as practicable and preferably within one hour. If the repeat sample confirms that the maximum allowable limit has been exceeded, the supplier of water shall report to the State within 48 hours. The

repeat sample shall be the sample used for the purpose of calculating the monthly average. If the monthly average of the daily samples exceeds the maximum allowable limit, or if the average of two samples taken on consecutive days exceeds 5 TU, the supplier of water shall report to the State and notify the public as directed in §§141.31 and 141.32.

sampling point more representative of each source or treatment plant.

(2) Surface water systems shall take a minimum of one sample at every entry point to the distribution system after any application of treatment or in the distribution system at a point which is representative of each source after treatment (hereafter called a sampling point) beginning in the initial compliance period. The system shall take each sample at the same sampling point unless conditions make another sampling point more representative of each source or treatment plant.

NOTE: For purposes of this paragraph, surface water systems include systems with a combination of surface and ground sources.

(3) If a system draws water from more than one source and the sources are combined before distribution, the system must sample at an entry point to the distribution system during periods of normal operating conditions (i.e., when water is representative of all sources being used).

- (4) The State may reduce the total number of samples which must be analyzed by allowing the use of compositing. Composite samples from a maximum of five samples are allowed, provided that the detection limit of the method used for analysis is less than one-fifth of the MCL. Compositing of samples must be done in the laboratory.
- (i) If the concentration in the composite sample is greater than or equal to one-fifth of the MCL of any inorganic chemical, then a follow-up sample must be taken within 14 days at each sampling point included in the composite. These samples must be analyzed for the contaminants which exceeded one-fifth of the MCL in the composite sample. Detection limits for each analytical method and MCLs for each inorganic contaminant are the following:

DETECTION LIMITS FOR INORGANIC CONTAMINANTS

Contaminant	MCL (mg/l)	Methodology	Detection limit (mg/l)
Antimony	0.006	Atomic Absorption; Furnace	0.003
		Atomic Absorption; Platform	0.00085
		ICP-Mass Spectrometry	0.0004
		Hydride-Atomic Absorption	0.001
Asbestos	7 MFL1	Transmission Electron Microscopy	0.01 MFL
Barium	2	Atomic Absorption; furnace technique	0.002
		Atomic Absorption; direct aspiration	0.1
		Inductively Coupled Plasma	0.002 (0.001)
Beryllium	0.004	Atomic Absorption; Furnace	0.0002
		Atomic Absorption; Platform	0.000025
		Inductively Coupled Plasma ²	0.0003
		ICP-Mass Spectrometry	0.0003
Cadmium	0.005	Atomic Absorption; furnace technique	0.0001
		Inductively Coupled Plasma	0.001
Chromium	0.1	Atomic Absorption; furnace technique	0.001
		Inductively Coupled Plasma	0.007 (0.001)
Cyanide	0.2	Distillation, Spectrophotometric ³	0.02
		Distillation, Automated, Spectrophotometric ³	0.005
		Distillation, Selective Electrode ³	0.05
		Distillation, Amenable, Spectrophotometric4	0.02
Mercury	0.002	Manual Cold Vapor Technique	0.0002
		Automated Cold Vapor Technique	0.0002
Nickel	xl	Atomic Absorption; Furnace	0.001
		Atomic Absorption; Platform	0.00065
		Inductively Coupled Plasma ²	0.005
		ICP-Mass Spectrometry	0.0005
Nitrate	10 (as N)	Manual Cadmium Reduction	0.01
		Automated Hydrazine Reduction	0.01
		Automated Cadmium Reduction	0.05
		Ion Selective Electrode	1
		Ion Chromatography	0.01
Nitrite	1 (as N)	Spectrophotometric	0.01
		Automated Cadmium Reduction	0.05
		Manual Cadmium Reduction	0.01
		Ion Chromatography	0.004
Selenium	0.05	Atomic Absorption; furnace	0.002
		Atomic Absorption; gaseous hydride	0.002
Thallium	0.002	Atomic Absorption; Furnace	0.001

§ 141.23

DETECTION LIMITS FOR INORGANIC CONTAMINANTS—Continued

Contaminant	MCL (mg/l)	Methodology	Detection limit (mg/l)
-------------	------------	-------------	------------------------

and consistently below the maximum contaminant level. In no case can a State make this determination unless a groundwater system takes a minimum of two quarterly samples and a surface (or combined surface/ground) water system takes a minimum of four quarterly samples.

- (10) If monitoring data collected after January 1, 1990 are generally consistent with the requirements of §141.23(b), then the State may allow systems to use that data to satisfy the monitoring requirement for the initial compliance period beginning January 1, 1993.
- (c) The frequency of monitoring conducted to determine compliance with the maximum contaminant levels in §141.62 for antimony, barium, beryllium, cadmium, chromium, cyanide, fluoride, mercury, nickel, selenium and thallium shall be as follows:
- (1) Groundwater systems shall take one sample at each sampling point during each compliance period. Surface water systems (or combined surface/ground) shall take one sample annually at each sampling point.
- (2) The system may apply to the State for a waiver from the monitoring frequencies specified in paragraph (c)(1) of this section. States may grant a public water system a waiver for monitoring of cyanide, provided that the State determines that the system is not vulnerable due to lack of any industrial source of cyanide.
- (3) A condition of the waiver shall require that a system shall take a minimum of one sample while the waiver is effective. The term during which the waiver is effective shall not exceed one compliance cycle (i.e., nine years).
- (4) The State may grant a waiver provided surface water systems have monitored annually for at least three years and groundwater systems have conducted a minimum of three rounds of monitoring. (At least one sample shall have been taken since January 1, 1990). Both surface and groundwater systems shall demonstrate that all previous analytical results were less than the maximum contaminant level. Systems that use a new water source are not eligible for a waiver until three rounds of monitoring from the new source have been completed.

- (5) In determining the appropriate reduced monitoring frequency, the State shall consider:
- (i) Reported concentrations from all previous monitoring;
- (ii) The degree of variation in reported concentrations; and
- (iii) Other factors which may affect contaminant concentrations such as changes in groundwater pumping rates, changes in the system's configuration, changes in the system's operating procedures, or changes in stream flows or characteristics.
- (6) A decision by the State to grant a waiver shall be made in writing and shall set forth the basis for the determination. The determination may be initiated by the State or upon an application by the public water system. The public water system shall specify the basis for its request. The State shall review and, where appropriate, revise its determination of the appropriate monitoring frequency when the system submits new monitoring data or when other data relevant to the system's appropriate monitoring frequency become available.
- (7) Systems which exceed the maximum contaminant levels as calculated in §141.23(i) of this section shall monitor quarterly beginning in the next quarter after the violation occurred.
- (8) The State may decrease the quarterly monitoring requirement to the frequencies specified in paragraphs (c)(1) and (c)(2) of this section provided it has determined that the system is reliably and consistently below the maximum contaminant level. In no case can a State make this determination unless a groundwater system takes a minimum of two quarterly samples and a surface water system takes a minimum of four quarterly samples.
- (d) All public water systems (community; non-transient, non-community; and transient, non-community systems) shall monitor to determine compliance with the maximum contaminant level for nitrate in §141.62.
- (1) Community and non-transient, non-community water systems served by groundwater systems shall monitor annually beginning January 1, 1993; systems served by surface water shall

monitor quarterly beginning January 1, 1993.

- (2) For community and non-transient, non-community water systems, the repeat monitoring frequency for groundwater systems shall be quarterly for at least one year following any one sample in which the concentration is ≥ 50 percent of the MCL. The State may allow a groundwater system to reduce the sampling frequency to annually after four consecutive quarterly samples are reliably and consistently less than the MCL.
- (3) For community and non-transient, non-community water systems, the State may allow a surface water system to reduce the sampling frequency to annually if all analytical results from four consecutive quarters are <50 percent of the MCL. A surface water system shall return to quarterly monitoring if any one sample is ≥50 percent of the MCL.
- (4) Each transient non-community water system shall monitor annually beginning January 1, 1993.
- (5) After the initial round of quarterly sampling is completed, each community and non-transient non-community system which is monitoring annually shall take subsequent samples during the quarter(s) which previously resulted in the highest analytical result.
- (e) All public water systems (community; non-transient, non-community; and transient, non-community systems) shall monitor to determine compliance with the maximum contaminant level for nitrite in §141.62(b).
- (1) All public water systems shall take one sample at each sampling point in the compliance period beginning January 1, 1993 and ending December 31, 1995.
- (2) After the initial sample, systems where an analytical result for nitrite is <50 percent of the MCL shall monitor at the frequency specified by the State.
- (3) For community, non-transient, non-community, and transient non-community water systems, the repeat monitoring frequency for any water system shall be quarterly for at least one year following any one sample in which the concentration is ≥50 percent of the MCL. The State may allow a system to reduce the sampling frequency to annually after determining the sys-

tem is reliably and consistently less than the MCL.

- (4) Systems which are monitoring annually shall take each subsequent sample during the quarter(s) which previously resulted in the highest analytical result.
 - (f) Confirmation samples:
- (1) Where the results of sampling for asbestos, antimony, barium, beryllium, cadmium, chromium, cyanide, fluoride, mercury, nickel, selenium or thallium indicate an exceedance of the maximum contaminant level, the State may require that one additional sample be collected as soon as possible after the initial sample was taken (but not to exceed two weeks) at the same sampling point.
 - (2) Where nitrate or nitrite sampling

- (1) For systems which are conducting monitoring at a frequency greater than annual, compliance with the maximum contaminant levels for antimony, asbestos, barium, beryllium, cadmium, chromium, cyanide, fluoride, mercury, nickel, selenium or thallium is determined by a running annual average at any sampling point. If the average at any sampling point is greater than the MCL, then the system is out of compliance. If any one sample would cause the annual average to be exceeded, then the system is out of compliance immediately. Any sample below the method detection limit shall be calculated at zero for the purpose of determining the annual average.
- (2) For systems which are monitoring annually, or less frequently, the system is out of compliance with the maximum contaminant levels for asbestos, antimony, barium, beryllium, cadmium, chromium, cyanide, fluoride, mercury, nickel, selenium or thallium if the level of a contaminant at any sampling point is greater than the MCL. If a confirmation sample is required by the State, the determination of compliance will be based on the average of the two samples.
- (3) Compliance with the maximum contaminant levels for nitrate and nitrate is determined based on one sample if the levels of these contaminants are below the MCLs. If the levels of nitrate and/or nitrite exceed the MCLs in the initial sample, a confirmation sample is required in accordance with paragraph (f)(2) of this section, and compli-

ance shall be determined based on the average of the initial and confirmation samples.

- (4) If a public water system has a distribution system separable from other parts of the distribution system with no interconnections, the State may allow the system to give public notice to only the area served by that portion of the system which is out of compliance.
- (j) Each public water system shall monitor at the time designated by the State during each compliance period.
 - (k) Inorganic analysis:
- (1) Analysis for the following contaminants shall be conducted in accordance with the methods in the following Table, or their equivalent as determined by EPA. Criteria for analyzing arsenic, barium, beryllium, cadmium, calcium, chromium, copper, lead, nickel, selenium, sodium, and thallium with digestion or directly without digestion, and other analytical test procedures are contained in Technical Notes on Drinking Water Methods, EPA-600/R-94-173, October 1994. This document also contains approved analytical test methods which remain available for compliance monitoring until July 1, 1996. These methods will not be available for use after July 1, 1996. This document is available from the National Technical Information Service, NTIS PB95-104766, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161. The toll-free number is 800-553-6847.

Contaminant	Methodology	EPA	ASTM ³	SM ⁴	Other
Antimony	ICP-Mass Spectrometry Hydride-Atomic Absorption	2200.8	D-3697-92		
	Atomic Absorption; Platform	2 200.9			
Arsenic	Atomic Absorption; Furnace	2200.7		3113B. 3120B.	
	ICP-Mass Spectrometry	2 200.8			
	Atomic Absorption; Platform	2 200.9			
	Atomic Absorption; Furnace		D-2972-93C	3113B.	
	Hydride Atomic Absorption		D-2972-93B	3114B.	
Asbestos	Transmission Electron Microscopy	9100.1			
	Transmission Electron Microscopy	10100.2			
Barium	_	2200.7		3120B.	
	ICP-Mass Spectrometry	2 200.8			
				3111D.	
	Atomic Absorption; Furnace			3113B.	
Beryllium	Inductively Coupled Plasma	2 200.7		3120B.	
	ICP-Mass Spectrometry	2 200.8			
	Atomic Absorption; Platform	2 200.9			
	Atomic Absorption; Furnace D-3645-93B		D-3645-93B	3113B.	
Cadmium	CadmiumInductively Coupled Plasma	7			

	Methodology	EPA	ASTM	SMS 6	Other
Manual Cad	Manual Cadmium Reduction		D3867-90B	4500-NO ₃ -E.	
Ion Chroma	Ion Chromatography	_	5300.0 D4327-91	4110B	8B-1011
Automated	Automated Cadmium Reduction		e353.2 D3867-90A	4500-NO ₃ -F.	
Manual Ca	Manual Cadmium Reduction		D3867-90B	4500-NO ₃ -E.	
Spectroph	Spectrophotometric			4500-NO ₂ -B.	
Selenium Hydride-At	Hydride-Atomic Absorption		D3859-93A	3114B.	
ICP-Mass	ICP-Mass Spectrometry	2 200.8			
Atomic Abs	Atomic Absorption; Platform				

(2) Sample collection for antimony, asbestos, barium, beryllium, cadmium, chromium, cyanide, fluoride, mercury, nickel, nitrate, nitrite, selenium, and thallium under this section shall be

conducted using the sample preservation, container, and maximum holding time procedures specified in the table below:

Contaminant	Preservative 1	Container 2	Time 3
Antimony Conc HNO ₃ to pH <2 Por G	Conc HNO ₃ to pH <2	P or G	6 months.
Asbestos Cool, 4°C	Cool, 4°C	P or G	
Barium	Conc HNO ₃ to pH <2	P or G	6 months.
Beryllium	Conc HNO ₃ to pH <2	P or G	6 months.
Cadmium	Conc HNO ₃ to pH <2	P or G	6 months.
Chromium	Conc HNO ₃ to pH <2	P or G	6 months.
Cyanida	Cool 4°C NaOH to pH>12		

- (3) Analysis under this section shall only be conducted by laboratories that have been certified by EPA or the State. Laboratories may conduct sample analysis under provisional certification until January 1, 1996. To receive certification to conduct analyses for antimony, asbestos, barium, beryllium, cadmium, chromium, cyanide, fluoride, mercury, nickel, nitrate, nitrite and selenium and thallium, the laboratory must:
- (i) Analyze Performance Evaluation samples which include those substances provided by EPA Environmental Monitoring Systems Laboratory or equivalent samples provided by the State.
- (ii) Achieve quantitative results on the analyses that are within the following acceptance limits:

0 1	
Contaminant	Acceptance limit
Antimony	±30 at ≥0.006 mg/1
Asbestos	2 standard deviations based
	on study statistics.
Barium	±15% at ≥0.15 mg/1
Beryllium	±15% at ≥0.001 mg/1
Cadmium	±20% at ≥0.002 mg/1
Chromium	±15% at ≥0.01 mg/1
Cyanide	±25% at ≥0.1 mg/1
Fluoride	±10% at ≥1 to 10 mg/1
Mercury	±30% at ≥0.0005 mg/1
Nickel	±15% at ≥0.01 mg/1
Nitrate	±10% at ≥0.4 mg/1
Nitrite	±15% at ≥0.4 mg/1
Selenium	±20% at ≥0.01 mg/1
Thallium	-

§141.24 Organic chemicals other than total trihalomethanes, sampling and analytical requirements.

(a)-(d) [Reserved]

(e) Analyses for the contaminants in this section shall be conducted using the following EPA methods or their equivalent as approved by EPA. Methods 502.2, 505, 507, 508, 508A, 515.1 and 531.1 are in Methods for the Determination of Organic Compounds in Drinking Water, EPA-600/4-88-039, December 1988, Revised, July 1991. Methods 506, 547, 550, 550.1 and 551 are in Methods for the Determination of Organic Compounds in Drinking Water—Supplement I, EPA-600-4-90-020, July 1990. Methods 515.2, 524.2, 548.1, 549.1, 552.1 and 555 are in Methods for the Determination of Organic Compounds in Drinking Water—Supplement II, EPA-600/R-92-129, August 1992. Method 1613 is titled "Tetra-through Octa-Chlorinated Dioxins and Furans by Isotope-Dilution HRGC/HRMS", EPA-821-B-94-005, October 1994. These documents are available from the National Technical Information Service, NTIS PB91-231480, PB91-146027, PB92-207703 and PB95-104774, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161. The toll-free number is 800-553-6847. Method 6651 shall be followed in accordance with the 18th edition of Standard Methods for the Examination of Water and Wastewater, 1992, American Public Health Association. This incorporation by reference was approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR Part 51. Copies may be obtained from the American Public Health Association, 1015 Fifteenth Street NW., Washington, DC 20005. Copies may be inspected at EPA's Drinking Water Docket, 401 M Street, SW., Washington, DC 20460; or at the Office of the Federal Register, 800 North Capitol Street, NW., Suite 700, Washington, DC. Method 6610 shall be followed in accordance with the Supplement to the 18th edition of Standard Methods for the Examination of Water and Wastewater, 1994, American Public Health Association. This incorporation by reference was approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR Part 51. Copies may be obtained from the American Public

Health Association, 1015 Fifteenth Street NW., Washington, DC 20005. Copies may be inspected at EPA's Drinking Water Docket, 401 M Street, SW., Washington, DC 20460; or at the Office of the Federal Register, 800 North Capitol Street, NW., Suite 700, Washington, DC. Other analytical test procedures are contained in Technical Notes on Drinking Water Methods, EPA-600/R-94-173, October 1994, NTIS PB95-104766. This document also contains approved analytical methods which remain available for compliance monitoring until July 1, 1996. These methods will not be available for use after July 1, 1996. EPA Methods 504.1, 508.1 and 525.2 are available from US EPA EMSL, Cincinnati, OH 45268. The phone number is 513-569-7586.

Contaminant	Method
Benzene	502.2, 524.2.
Carbon tetrachloride	502.2, 524.2, 551.
Chlorobenzene	502.2, 524.2.
1,2-Dichlorobenzene	502.2, 524.2.
1,4-Dichlorobenzene	502.2, 524.2.
1,2-Dichloroethane	502.2, 524.2.
cis-Dichloroethylene	502.2, 524.2.
trans-Dichloroethylene	502.2, 524.2.
Dichloromethane	502.2, 524.2.
1,2-Dichloropropane	502.2, 524.2.
Ethylbenzene	502.2, 524.2.
Styrene	502.2, 524.2.
Tetrachloroethylene	502.2, 524.2, 551.
1,1,1-Trichloroethane	502.2, 524.2, 551.
Trichloroethylene	502.2, 524.2, 551.
Toluene	502.2, 524.2.
1,2,4-Trichlorobenzene	502.2, 524.2.
1,1-Dichloroethylene	502.2, 524.2.
1,1,2-Trichloroethane	502.2, 524.2.
Vinyl chloride	502.2, 524.2.
Xylenes (total)	502.2, 524.2.

Contaminant	Method
PCBs ² (as decachlo- robiphenyl).	508A.
(as Aroclors)	505, 508.
Pentachlorophenol	515.2, 525.2, 555, 515.1.
Picloram	515.2, 555, 515.1.
Simazine	505 ¹ , 507, 525.2, 508.1.
Toxaphene	505, 508, 525.2.
Total Trihalomethanes	502.2, 524.2, 551.

- ¹ A nitrogen-phosphorous detector should be substituted for the electron capture detector in Method 505 (or another ap-proved method should be used) to determine alachlor, atrazine and simazine, if lower detection limits are required.

 ² PCBs are qualitatively identified as Aroclors and measured
- for compliance purposes as decachlorobiphenyl
- (f) Beginning with the initial compliance period, analysis of the contaminants listed in §141.61(a) (1) through (21) for the purpose of determining compliance with the maximum contaminant level shall be conducted as
- (1) Groundwater systems shall take a minimum of one sample at every entry point to the distribution system which is representative of each well after treatment (hereafter called a sampling point). Each sample must be taken at the same sampling point unless conditions make another sampling point more representative of each source, treatment plant, or within the distribution system.
- (2) Surface water systems (or combined surface/ground) shall take a minimum of one sample at points in the distribution system that are representative of each source or at each entry point to the distribution system after treatment (hereafter called a sampling point). Each sample must be taken at the same sampling point unless conditions make another sampling point more representative of each source, treatment plant, or within the distribution system.
- (3) If the system draws water from more than one source and the sources are combined before distribution, the system must sample at an entry point to the distribution system during periods of normal operating conditions (i.e., when water representative of all sources is being used).
- (4) Each community and non-transient non-community water system shall take four consecutive quarterly samples for each contaminant listed in §141.61(a) (2) through (21) during each compliance period, beginning in the initial compliance period.

- (5) If the initial monitoring for contaminants listed in §141.61(a) through (8) and the monitoring for the contaminants listed in §141.61(a) (9) through (21) as allowed in paragraph (f)(18) has been completed by December 31, 1992, and the system did not detect any contaminant listed in §141.61(a) (1) through (21), then each ground and surface water system shall take one sample annually beginning with the initial compliance period.
- (6) After a minimum of three years of annual sampling, the State may allow groundwater systems with no previous detection of any contaiminant listed in §141.61(a) to take one sample during each compliance period.
- (7) Each community and non-transient non-community ground water system which does not detect a contaminant listed in §141.61(a) through (21) may apply to the State for a waiver from the requirements of paragraphs (f)(5) and (f)(6) of this section after completing the initial monitoring. (For purposes of this section, detection is defined as ≥0.0005 mg/l.) A waiver shall be effective for no more than six years (two compliance periods). States may also issue waivers to small systems for the initial round of monitoring for 1,2,4-trichlorobenzene.
- (8) A State may grant a waiver after evaluating the following factor(s):
- (i) Knowledge of previous use (including transport, storage, or disposal) of the contaminant within the watershed or zone of influence of the system. If a determination by the State reveals no previous use of the contaminant within the watershed or zone of influence, a waiver may be granted.
- (ii) If previous use of the contaminant is unknown or it has been used previously, then the following factors shall be used to determine whether a waiver is granted.
 - (A) Previous analytical results.
- (B) The proximity of the system to a potential point or non-point source of contamination. Point sources include spills and leaks of chemicals at or near a water treatment facility or at manufacturing, distribution, or storage facilities, or from hazardous and municipal waste landfills and other waste handling or treatment facilities.

- (C) The environmental persistence and transport of the contaminants.
- (D) The number of persons served by the public water system and the proximity of a smaller system to a larger system.
- (E) How well the water source is protected against contamination, such as whether it is a surface or groundwater system. Groundwater systems must consider factors such as depth of the well, the type of soil, and wellhead protection. Surface water systems must consider watershed protection.
- (9) As a condition of the waiver a groundwater system must take one sample at each sampling point during the time the waiver is effective (i.e., one sample during two compliance periods or six years) and update its vulnerability assessment considering the factors listed in paragraph (f)(8) of this section. Based on this vulnerability assessment the State must reconfirm that the system is non-vulnerable. If the State does not make this reconfirmation within three years of the initial determination, then the waiver is invalidated and the system is required to sample annually as specified in paragraph (5) of this section.
- (10) Each community and non-transient non-community surface water system which does not detect a contaminant listed in §141.61(a) (1) through (21) may apply to the State for

- (13) The State may require a confirmation sample for positive or negative results. If a confirmation sample is required by the State, the result must be averaged with the first sampling result and the average is used for the compliance determination as specified by paragraph (f)(15). States have discretion to delete results of obvious sampling errors from this calculation.
- (14) The State may reduce the total number of samples a system must analyze by allowing the use of compositing. Composite samples from a maximum of five sampling points are allowed, provided that the detection limit of the method used for analysis is less than one-fifth of the MCL. Compositing of samples must be done in the laboratory and analyzed within 14 days of sample collection.
- (i) If the concentration in the composite sample is greater than or equal to 0.0005 mg/l for any contaminant listed in §141.61(a), then a follow-up sample must be taken within 14 days at each sampling point included in the composite, and be analyzed for that contaminant.
- (ii) If duplicates of the original sample taken from each sampling point used in the composite are available, the system may use these instead of resampling. The duplicate must be analyzed and the results reported to the State within 14 days of collection.
- (iii) If the population served by the system is > 3,300 persons, then compositing may only be permitted by the State at sampling points within a single system. In systems serving $\leq 3,300$ persons, the State may permit compositing among different systems provided the 5-sample limit is maintained.
- (iv) Compositing samples prior to GC analysis.
- (A) Add 5 ml or equal larger amounts of each sample (up to 5 samples are allowed) to a 25 ml glass syringe. Special precautions must be made to maintain zero headspace in the syringe.
- (B) The samples must be cooled at 4°C during this step to minimize volatilization losses.
- (C) Mix well and draw out a 5-ml aliquot for analysis.

- (D) Follow sample introduction, purging, and desorption steps described in the method.
- (E) If less than five samples are used for compositing, a proportionately small syringe may be used.
- (v) Compositing samples prior to GC/MS analysis.
- (A) Inject 5-ml or equal larger amounts of each aqueous sample (up to 5 samples are allowed) into a 25-ml purging device using the sample introduction technique described in the method.
- (B) The total volume of the sample in the purging device must be 25 ml.
- (C) Purge and desorb as described in the method
- (15) Compliance with §141.61(a) (1) through (21) shall be determined based on the analytical results obtained at each sampling point.
- (i) For systems which are conducting monitoring at a frequency greater than annual, compliance is determined by a running annual average of all samples taken at each sampling point. If the annual average of any sampling point is greater than the MCL, then the system is out of compliance. If the initial sample or a subsequent sample would cause the annual average to be exceeded, then the system is out of compliance immediately.
- (ii) If monitoring is conducted annually, or less frequently, the system is out of compliance if the level of a contaminant at any sampling point is greater than the MCL. If a confirmation sample is required by the State, the determination of compliance will be based on the average of two samples.
- (iii) If a public water system has a distribution system separable from other parts of the distribution system with no interconnections, the State may allow the system to give public notice to only that area served by that portion of the system which is out of compliance.
 - (16) [Reserved]
- (17) Analysis under this section shall only be conducted by laboratories that are certified by EPA or the State according to the following conditions (laboratories may conduct sample analysis under provisional certification until January 1, 1996):

(i) To receive certification to conduct analyses for the contaminants in §141.61(a) (2) through (21) the laboratory must:

(Å) Analyze Performance Evaluation samples which include these substances provided by EPA Environmental Monitoring Systems Laboratory or equivalent samples provided by the State.

(B) Achieve the quantitative acceptance limits under paragraphs (f)(17)(i) (C) and (D) of this section for at least 80 percent of the regulated organic chemicals listed in §141.61(a) (2) through (21).

(C) Achieve quantitative results on the analyses performed under paragraph (f)(17)(i)(A) of this section that are within $\pm 20\%$ of the actual amount of the substances in the Performance Evaluation sample when the actual amount is greater than or equal to 0.010 mg/l.

(D) Achieve quantitative results on the analyses performed under paragraph (f)(17)(i)(A) of this section that are within ± 40 percent of the actual amount of the substances in the Performance Evaluation sample when the actual amount is less than 0.010 mg/l.

(E) Achieve a method detection limit of 0.0005 mg/l, according to the procedures in Appendix B of Part 136.

(ii) To receive certification for vinyl chloride, the laboratory must:

(A) Analyze Performance Evaluation samples provided by EPA Environmental Monitoring Systems Laboratory or equivalent samples provided by the State.

(B) Achieve quantitative results on the analyses performed under paragraph (f)(17)(ii)(A) of this section that are within ± 40 percent of the actual amount of vinyl chloride in the Performance Evaluation sample.

(C) Achieve a method detection limit of 0.0005 mg/l, according to the procedures in appendix B of part 136.

(D) Obtain certification for the contaminants listed in §141.61(a)(2) through (21).

(18) States may allow the use of monitoring data collected after January 1, 1988, required under section 1445 of the Act for purposes of initial monitoring compliance. If the data are generally consistent with the other requirements of this section, the State may use these

data (i.e., a single sample rather than four quarterly samples) to satisfy the initial monitoring requirement of paragraph (f)(4) of this section. Systems which use grandfathered samples and did not detect any contaminant listed $\S141.61(a)(2)$ through (21) shall begin monitoring annually in accordance with paragraph (f)(5) of this section beginning with the initial compliance period.

(19) States may increase required monitoring where necessary to detect variations within the system.

(20) Each certified laboratory must determine the method detection limit (MDL), as defined in appendix B to part 136, at which it is capable of detecting VOCs. The acceptable MDL is 0.0005 mg/l. This concentration is the detection concentration for purposes of this section.

(21) Each public water system shall monitor at the time designated by the State within each compliance period.

(g) [Reserved]

(h) Analysis of the contaminants listed in §141.61(c) for the purposes of determining compliance with the maxi-

 $^{^7}Monitoring$ for the contaminants aldicarb, aldicarb sulfoxide, and aldicarb sulfone shall be conducted in accordance with $\S\,141.40.$

with a combination of surface and ground sources.

- (3) If the system draws water from more than one source and the sources are combined before distribution, the system must sample at an entry point to the distribution system during periods of normal operating conditions (i.e., when water representative of all sources is being used).
 - (4) Monitoring frequency:
- (i) Each community and non-transient non-community water system shall take four consecutive quarterly samples for each contaminant listed in §141.61(c) during each compliance period beginning with the initial compliance period.
- (ii) Systems serving more than 3,300 persons which do not detect a contaminant in the initial compliance period may reduce the sampling frequency to a minimum of two quarterly samples in one year during each repeat compliance period.
- (iii) Systems serving less than or equal to 3,300 persons which do not detect a contaminant in the initial compliance period may reduce the sampling frequency to a minimum of one sample during each repeat compliance period.
- (5) Each community and non-transient water system may apply to the State for a waiver from the requirement of paragraph (h)(4) of this section. A system must reapply for a waiver for each compliance period.
- (6) A State may grant a waiver after evaluating the following factor(s): Knowledge of previous use (including transport, storage, or disposal) of the contaminant within the watershed or zone of influence of the system. If a determination by the State reveals no previous use of the contaminant within the watershed or zone of influence, a waiver may be granted. If previous use of the contaminant is unknown or it has been used previously, then the following factors shall be used to determine whether a waiver is granted.
 - (i) Previous analytical results.
- (ii) The proximity of the system to a potential point or non-point source of contamination. Point sources include spills and leaks of chemicals at or near a water treatment facility or at manufacturing, distribution, or storage fa-

- cilities, or from hazardous and municipal waste landfills and other waste handling or treatment facilities. Nonpoint sources include the use of pesticides to control insect and weed pests on agricultural areas, forest lands, home and gardens, and other land application uses.
- (iii) The environmental persistence and transport of the pesticide or PCBs.
- (iv) How well the water source is protected against contamination due to such factors as depth of the well and the type of soil and the integrity of the well casing.
- (v) Elevated nitrate levels at the water supply source.
- (vi) Use of PCBs in equipment used in the production, storage, or distribution of water (i.e., PCBs used in pumps, transformers, etc.).
- (7) If an organic contaminant listed in §141.61(c) is detected (as defined by paragraph (h)(18) of this section) in any sample, then:
- (i) Each system must monitor quarterly at each sampling point which resulted in a detection.
- (ii) The State may decrease the quarterly monitoring requirement specified in paragraph (h)(7)(i) of this section provided it has determined that the system is reliably and consistently below the maximum contaminant level. In no case shall the State make this determination unless a groundwater system takes a minimum of two quarterly samples and a surface water system takes a minimum of four quarterly samples.
- (iii) After the State determines the system is reliably and consistently below the maximum contaminant level the State may allow the system to monitor annually. Systems which monitor annually must monitor during the quarter that previously yielded the highest analytical result.
- (iv) Systems which have 3 consecutive annual samples with no detection of a contaminant may apply to the State for a waiver as specified in paragraph (h)(6) of this section.
- (v) If monitoring results in detection of one or more of certain related contaminants (aldicarb, aldicarb sulfone,

aldicarb sulfoxide and heptachlor, heptachlor epoxide), then subsequent monitoring shall analyze for all related contaminants.

- (8) Systems which violate the requirements of §141.61(c) as determined by paragraph (h)(11) of this section must monitor quarterly. After a minimum of four quarterly samples show the system is in compliance and the State determines the system is reliably and consistently below the MCL, as specified in paragraph (h)(11) of this section, the system shall monitor at the frequency specified in paragraph (h)(7)(iii) of this section.
- (9) The State may require a confirmation sample for positive or negative results. If a confirmation sample is required by the State, the result must be averaged with the first sampling result and the average used for the compliance determination as specified by paragraph (h)(11) of this section. States have discretion to delete results of obvious sampling errors from this calculation.
- (10) The State may reduce the total number of samples a system must analyze by allowing the use of compositing. Composite samples from a maximum of five sampling points are allowed, provided that the detection limit of the method used for analysis is less than one-fifth of the MCL. Compositing of samples must be done in the laboratory and analyzed within 14 days of sample collection.
- (i) If the concentration in the composite sample detects one or more contaminants listed in §141.61(c), then a follow-up sample must be taken within 14 days at each sampling point included in the composite, and be analyzed for that contaminant.
- (ii) If duplicates of the original sample taken from each sampling point used in the composite are available, the system may use these duplicates instead of resampling. The duplicate must be analyzed and the results reported to the State within 14 days of collection.
- (iii) If the population served by the system is >3,300 persons, then compositing may only be permitted by the State at sampling points within a single system. In systems serving \leq 3,300 persons, the State may permit

compositing among different systems provided the 5-sample limit is maintained.

- (11) Compliance with §141.61(c) shall be determined based on the analytical results obtained at each sampling point.
- (i) For systems which are conducting monitoring at a frequency greater than annual, compliance is determined by a running annual average of all samples taken at each sampling point. If the annual average of any sampling point is greater than the MCL, then the system is out of compliance. If the initial sample or a subsequent sample would cause the annual average to be exceeded, then the system is out of compliance immediately. Any samples below the detection limit shall be calculated as zero for purposes of determining the annual average.
 - (ii) If monitoring is conducted annu-

40 CFR Ch. I (7-1-96 Edition)

§ 141.24

Aroclor	Detection limit (mg/l)
1260	0.0002

(iii) Compliance with the PCB MCL shall be determined based upon the quantitative results of analyses using Method 508A.

(14) If monitoring data collected after K'477 6 6

§ 141.26

(ii) [Reserved]

(Approved by the Office of Management and Budget under control number 2040–0090)

[40 FR 59570, Dec. 24, 1975, as amended at 44 FR 68641, Nov. 29, 1979; 45 FR 57345, Aug. 27, 1980; 47 FR 10998, Mar. 12, 1982; 52 FR 25712, July 8, 1987; 53 FR 5147, Feb. 19, 1988; 53 FR 25110, July 1, 1988; 56 FR 3583, Jan. 30, 1991; 56 FR 30277, July 1, 1991; 57 FR 22178, May 27, 1992; 57 FR 31841, July 17, 1992; 59 FR 34323, July 1, 1994; 59 FR 62468, Dec. 5, 1994; 60 FR 34085, June 29, 1995]

$\S 141.25$ Analytical methods for radioactivity.

(a) The methods specified in *Interim Radiochemical Methodology for Drinking Water*, Environmental Monitoring and Support Laboratory, EPA-600/4-75-008,

- (1) Initial sampling to determine compliance with §141.15 shall begin within two years of the effective date of these regulations and the analysis shall be completed within three years of the effective date of these regulations. Compliance shall be based on the analysis of an annual composite of four consecutive quarterly samples or the average of the analyses of four samples obtained at quarterly intervals.
- (i) A gross alpha particle activity measurement may be substituted for the required radium–226 and radium–228 analysis *Provided*, That the measured gross alpha particle activity does not exceed 5 pCi/1 at a confidence level of 95 percent (1.65 σ where σ is the standard deviation of the net counting rate of the sample). In localities where radium–228 may be present in drinking water, it is recommended that the State require radium–226 and/or radium–228 analyses when the gross alpha particle activity exceeds 2 pCi/1.
- (ii) When the gross alpha particle activity exceeds 5 pCi/1, the same or an equivalent sample shall be analyzed for radium-226. If the concentration of radium-226 exceeds 3 pCi/1 the same or an equivalent sample shall be analyzed for radium-228.
- (2) For the initial analysis required by paragraph (a)(1) of this section, data acquired within one year prior to the effective date of this part may be substituted at the discretion of the State.
- (3) Suppliers of water shall monitor at least once every four years following the procedure required by paragraph (a)(1) of this section. At the discretion of the State, when an annual record taken in conformance with paragraph (a)(1) of this section has established that the average annual concentration is less than half the maximum contaminant levels established by §141.15, analysis of a single sample may be substituted for the quarterly sampling procedure required by paragraph (a)(1) of this section.
- (i) More frequent monitoring shall be conducted when ordered by the State in the vicinity of mining or other operations which may contribute alpha particle radioactivity to either surface or ground water sources of drinking water.

- (ii) A supplier of water shall monitor in conformance with paragraph (a)(1) of this section within one year of the introduction of a new water source for a community water system. More frequent monitoring shall be conducted when ordered by the State in the event of possible contamination or when changes in the distribution system or treatment processing occur which may increase the concentration of radioactivity in finished water.
- (iii) A community water system using two or more sources having different concentrations of radioactivity shall monitor source water, in addition to water from a free-flowing tap, when ordered by the State.
- (iv) Monitoring for compliance with §141.15 after the initial period need not include radium-228 except when required by the State, Provided, That the average annual concentration of radium-228 has been assayed at least once using the quarterly sampling procedure required by paragraph (a)(1) of this section.
- (v) Suppliers of water shall conduct annual monitoring of any community water system in which the radium-226 concentration exceeds 3 pCi/1, when ordered by the State.
- (4) If the average annual maximum contaminant level for gross alpha particle activity or total radium as set forth in §141.15 is exceeded, the supplier of a community water system shall give notice to the State pursuant to §141.31 and notify the public as required by §141.32. Monitoring at quarterly intervals shall be continued until the annual average concentration no longer exceeds the maximum contaminant level or until a monitoring schedule as a condition to a variance, exemption or enforcement action shall become effective.
- (b) Monitoring requirements for manmade radioactivity in community water systems.
- (1) Within two years of the effective date of this part, systems using surface water sources and serving more than 100,000 persons and such other community water systems as are designated by the State shall be monitored for compliance with §141.16 by analysis of

a composite of four consecutive quarterly samples or analysis of four quarterly samples. Compliance with §141.16 may be assumed without further analysis if the average annual concentration of gross beta particle activity is less than 50 pCi/1 and if the average annual concentrations of tritium and strontium–90 are less than those listed in Table A, *Provided*, That if both radionuclides are present the sum of their annual dose equivalents to bone marrow shall not exceed 4 millirem/year.

- (i) If the gross beta particle activity exceeds 50 pCi/l, an analysis of the sample must be performed to identify the major radioactive constituents present and the appropriate organ and total body doses shall be calculated to determine compliance with §141.16.
- (ii) Suppliers of water shall conduct additional monitoring, as ordered by the State, to determine the concentration of man-made radioactivity in principal watersheds designated by the State.
- (iii) At the discretion of the State, suppliers of water utilizing only ground waters may be required to monitor for man-made radioactivity.
- (2) For the initial analysis required by paragraph (b)(1) of this section data acquired within one year prior to the effective date of this part may be substituted at the discretion of the State.
- (3) After the initial analysis required by paragraph (b)(1) of this section suppliers of water shall monitor at least every four years following the procedure given in paragraph (b)(1) of this section.
 - (4) Within two years of the effective

technique shall not decrease the frequency of monitoring required by this part.

[45 FR 57345, Aug. 27, 1980]

§141.28 Certified laboratories.

(a) For the purpose of determining compliance with §§141.21 through 141.27, 141.41 and 141.42, samples may be considered only if they have been analyzed by a laboratory certified by the State except that measurements for turbidity, free chlorine residual, temperature and pH may be performed by any person acceptable to the State.

(b) Nothing in this part shall be construed to preclude the State or any duly designated representative of the State from taking samples or from using the results from such samples to determine compliance by a supplier of water with the applicable requirements of this part.

[45 FR 57345, Aug. 27, 1980; 47 FR 10999, Mar. 12, 1982, as amended at 59 FR 34323, July 1, 1994]

§141.29 Monitoring of consecutive public water systems.

When a public water system supplies water to one or more other public water systems, the State may modify the monitoring requirements imposed by this part to the extent that the interconnection of the systems justifies treating them as a single system for monitoring purposes. Any modified monitoring shall be conducted pursuant to a schedule specified by the State and concurred in by the Administrator of the U.S. Environmental Protection Agency.

§ 141.30 Total trihalomethanes sampling, analytical and other requirements.

(a) Community water system which serve a population of 10,000 or more individuals and which add a disinfectant (oxidant) to the water in any part of the drinking water treatment process shall analyze for total trihalomethanes in accordance with this section. For systems serving 75,000 or more individuals, sampling and analyses shall begin not later than 1 year after the date of promulgation of this regulation. For systems serving 10,000 to 74,999 individuals, sampling and analyses shall begin

not later than 3 years after the date of promulgation of this regulation. For the purpose of this section, the minimum number of samples required to be taken by the system shall be based on the number of treatment plants used by the system, except that multiple wells drawing raw water , AFR0.16.090 804of tÑ

written determination by the State that the data from at least 1 year of monitoring in accordance with paragraph (b)(1) of this section and local conditions demonstrate that total trihalomethane concentrations will be consistently below the maximum contaminant level.

(3) If at any time during which the reduced monitoring frequency scribed under this paragraph applies, the results from any analysis exceed 0.10 mg/l of TTHMs and such results are confirmed by at least one check sample taken promptly after such results are received, or if the system makes any significant change to its source of water or treatment program, the system shall immediately begin monitoring in accordance with the requirements of paragraph (b)(1) of this section, which monitoring shall continue for at least 1 year before the frequency may be reduced again. At the option of the State, a system's monitoring frequency may and should be increased above the minimum in those cases where it is necessary to detect variations of TTHM levels within the distribution system.

(c)(1) Upon written request to the State, a community water system utilizing only ground water sources may seek to have the monitoring frequency required by paragraph (b)(1) of this section reduced to a minimum of one sample for maximum TTHM potential per year for each treatment plant used by the system taken at a point in the distribution system reflecting maximum residence time of the water in the system. The system shall submit the results of at least one sample for maximum TTHM potential using the procedure specified in paragraph (g) of this section. A sample must be analyzed from each treatment plant used by the system and be taken at a point in the distribution system reflecting the maximum residence time of the water in the system. The system's monitoring frequency may only be reduced upon a written determination by the State that, based upon the data submitted by the system, the system has a maximum TTHM potential of less than 0.10 mg/l and that, based upon an assessment of the local conditions of the system, the system is not likely to approach or exceed the maximum contaminant level for total TTHMs. The results of all analyses shall be reported to the State within 30 days of the system's receipt of such results. Results shall also be reported to EPA until such monitoring requirements have been adopted by the State. All samples collected shall be used for determining whether the system must comply with the monitoring requirements of paragraph (b) of this section, unless the analytical results are invalidated for technical reasons. Sampling and analyses shall be conducted in accordance with the methods listed in paragraph (e) of this section.

(2) If at any time during which the reduced monitoring frequency prescribed under paragraph (c)(1) of this section applies, the results from any analysis taken by the system for maximum TTHM potential are equal to or greater than 0.10 mg/l, and such results are confirmed by at least one check sample taken promptly after such results are received, the system shall immediately begin monitoring in accordance with the requirements of paragraph (b) of this section and such monitoring shall continue for at least one year before the frequency may be reduced again. In the event of any significant change to the system's raw water or treatment program, the system shall immediately analyze an additional sample for maximum TTHM potential taken at a point in the distribution system reflecting maximum residence time of the water in the system for the purpose of determining whether the system must comply with the monitoring requirements of paragraph (b) of this section. At the option of the State, monitoring frequencies may and should be increased above the minimum in those cases where this is necessary to detect variation of TTHM levels within the distribution system.

(d) Compliance with §141.12(c) shall be determined based on a running annual average of quarterly samples collected by the system as prescribed in paragraph (b)(1) or (2) of this section. If the average of samples covering any 12 month period exceeds the Maximum Contaminant Level, the supplier of

water shall report to the State pursuant to §141.31 and notify the public pursuant to §141.32. Monitoring after public notification shall be at a frequency designated by the State and shall continue until a monitoring schedule as a condition to a variance, exemption or enforcement action shall become effective.

- (e) Sampling and analyses made pursuant to this section shall be conducted by one of the trihalomethane methods as directed in §141.24(e), and the Technical Notes on Drinking Water Methods, EPA-600/R-94-173, October 1994, which is available from NTIS, PB-104766. Samples for TTHM shall be dechlorinated upon collection to prevent further production of trihalomethanes, according to the procedures described in the methods, except acidification is not required if only THMs or TTHMs are to be determined. Samples for maximum TTHM potential should not be dechlorinated or acidified, and should be held for seven days at 25°C (or above) prior to analysis.
- (f) Before a community water system makes any significant modifications to its existing treatment process for the purposes of achieving compliance with §141.12(c), such system must submit and obtain State approval of a detailed plan setting forth its proposed modification and those safeguards that it will implement to ensure that the bacteriological quality of the drinking water served by such system will not be adversely affected by such modification. Each system shall comply with the provisions set forth in the Stateapproved plan. At a minimum, a State approved plan shall require the system modifying its disinfection practice to:
- (1) Evaluate the water system for sanitary defects and evaluate the source water for biological quality;
- (2) Evaluate its existing treatment practices and consider improvements that will minimize disinfectant demand and optimize finished water quality throughout the distribution system:
- (3) Provide baseline water quality survey data of the distribution system. Such data should include the results from monitoring for coliform and fecal coliform bacteria, fecal streptococci,

- standard plate counts at 35° C and 20° C, phosphate, ammonia nitrogen and total organic carbon. Virus studies should be required where source waters are heavily contaminated with sewage effluent:
- (4) Conduct additional monitoring to assure continued maintenance of optimal biological quality in finished water, for example, when chloramines are introduced as disinfectants or when pre-chlorination is being discontinued. Additional monitoring should also be required by the State for chlorate, chlorite and chlorine dioxide when chlorine dioxide is used. Standard plate count analyses should also be required by the State as appropriate before and after any modifications;
- (5) Consider inclusion in the plan of provisions to maintain an active disinfectant residual throughout the distribution system at all times during and after the modification.
- (g) The water sample for determination of maximum total trihalomethane potential is taken from a point in the distribution system that reflects maximum residence time. Procedures for

Environmental Protection Agency

samples and determine total THM concentration using an approved analytical method.

[44 FR 68641, Nov. 29, 1979, as amended at 45 FR 15545, 15547, Mar. 11, 1980; 58 FR 41345, Aug. 3, 1993; 59 FR 62469, Dec. 5, 1994; 60 FR 34085, June 29, 1995]

Subpart D—Reporting, Public Notification and Recordkeeping

§141.31 Reporting requirements.

- (a) Except where a shorter period is specified in this part, the supplier of water shall report to the State the results of any test measurement or analysis required by this part within (1) The first ten days following the month in which the result is received, or (2) the first ten days following the end of the required monitoring period as stipulated by the State, whichever of these is shortest.
- (b) Except where a different reporting period is specified in this part, the supplier of water must report to the State within 48 hours the failure to comply with any national primary drinking water regulation (including failure to comply with monitoring requirements) set forth in this part.
- (c) The supplier of water is not required to report analytical results to the State in cases where a State laboratory performs the analysis and reports the results to the State office which would normally receive such notification from the supplier.
- (d) The water supply system, within ten days of completion of each public notification required pursuant to §141.32, shall submit to the State a representative copy of each type of notice distributed, published, posted, and/or made available to the persons served

- (B) Violation of the MCL for nitrate or nitrite as defined in §141.62 and determined according to §141.23(i)(3).
- (C) Violation of the MCL for total coliforms, when fecal coliforms or *E. coli* are present in the water distribution system, as specified in §141.63(b).
- (D) Occurrence of a waterborne disease outbreak, as defined in §141.2, in an unfiltered system subject to the requirements of subpart H of this part, after December 30, 1991 (see §141.71(b)(4)).
- (2) Except as provided in paragraph (a)(3) of this section, following the initial notice given under paragraph (a)(1) of this section, the owner or operator of the public water system must give notice at least once every three months by mail delivery (by direct mail or with the water bill) or by hand delivery, for as long as the violation or failure exists.
- (3)(i) In lieu of the requirements of paragraphs (a) (1) and (2) of this section, the owner or operator of a community water system in an area that is not served by a daily or weekly newspaper of general circulation must give notice by hand delivery or by continuous posting in conspicuous places within the area served by the system. Notice by hand delivery or posting must begin as soon as possible, but no later than 72 hours after the violation or failure for acute violations (as defined in paragraph (a)(1)(iii) of this section), or 14 days after the violation or failure (for any other violation). Posting must

the violation exists or a variance or exemption remains in effect. Notice by hand delivery must be repeated at least every three months for as long as the violation exists or a variance or exemption remains in effect.

(ii) In lieu of the requirements of paragraphs (b)(1) and (b)(2) of this section, the owner or operator of a noncommunity water system may give notice, within three months of the violation or the granting of the variance or exemption, by hand delivery or by continuous posting in conspicuous places within the area served by the system. Posting must continue for as long as the violation exists, or a variance or exemption remains in effect. Notice by hand delivery must be repeated at least every three months for as long as the violation exists or a variance or exemption remains in effect.

(4) In lieu of the requirements of paragraphs (b)(1), (b)(2), and (b)(3) of this section, the owner or operator of a public water system, at the discretion of the State, may provide less frequent notice for minor monitoring violations as defined by the State, if EPA has approved the State's application for a program revision under §142.16. Notice of such violations must be given no less frequently than annually.

(c) Notice to new billing units. The owner or operator of a community water system must give a copy of the most recent public notice for any outstanding violation of any maximum contaminant level, or any treatment technique requirement, or any variance or exemption schedule to all new billing units or new hookups prior to or at the time service begins.

(d) General content of public notice. Each notice required by this section must provide a clear and readily understandable explanation of the violation, any potential adverse health effects, the population at risk, the steps that the public water system is taking to correct such violation, the necessity for seeking alternative water supplies, if any, and any preventive measures the consumer should take until the violation is corrected. Each notice shall be conspicuous and shall not contain unduly technical language, unduly small print, or similar problems that frustrate the purpose of the notice. Each notice shall include the telephone number of the owner, operator, or designee of the public water system as a source of additional information concerning the notice. Where appropriate, the notice shall be multi-lingual.

(e) Mandatory health effects language. When providing the information on potential adverse health effects required by paragraph (d) of this section in notices of violations of maximum contaminant levels or treatment technique requirements, or notices of the granting or the continued existence of exemptions or variances, or notices of failure to comply with a variance or exemption schedule, the owner or operator of a public water system shall include the language specified below for each contaminant. (If language for a particular contaminant is not specified below at the time notice is required, this paragraph does not apply.)

Trichloroethylene. The United Protection States Environmental Agency (EPA) sets drinking water standards and has determined that trichloroethylene is a health concern at certain levels of exposure. This chemical is a common metal cleaning and dry cleaning fluid. It generally gets into drinking water by improper waste disposal. This chemical has been shown to cause cancer in laboratory animals such as rats and mice when the animals are exposed at high levels over their lifetimes. Chemicals that cause cancer in laboratory animals also may increase the risk of cancer in humans who are exposed at lower levels over long periods of time. EPA has set forth the enforceable drinking water standard for trichloroethylene at 0.005 parts per million (ppm) to reduce the risk of cancer or other adverse health effects which have been observed in laboratory animals. Drinking water which meets this standard is associated with little to none of this risk and should be considered safe.

(2) Carbon tetrachloride. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that carbon tetrachloride is a health concern at certain levels of exposure. This chemical was once a popular household cleaning fluid. It generally gets into

drinking water by improper waste disposal. This chemical has been shown to cause cancer in laboratory animals such as rats and mice when the animals are exposed at high levels over their lifetimes. Chemicals that cause cancer in laboratory animals also may increase the risk of cancer in humans who are exposed at lower levels over long periods of of time. EPA has set the enforceable drinking water standard for carbon tetrachloride at 0.005 parts per million (ppm) to reduce the risk of cancer or other adverse health effects which have been observed in laboratory animals. Drinking water which meets this standard is associated with little to none of this risk and should be considered safe.

(3) 1,2-Dichloroethane. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that 1,2dichloroethane is a health concern at certain levels of exposure. This chemical is used as a cleaning fluid for fats, oils, waxes, and resins. It generally gets into drinking water from improper waste disposal. This chemical has been shown to cause cancer in laboratory animals such as rats and mice when the animals are exposed at high levels over their lifetimes. Chemicals that cause cancer in laboratory animals also may increase the risk of cancer in humans who are exposed at lower levels over long periods of time. EPA has set the enforceable drinking water standard for 1,2-dichloroethane at 0.005 parts per million (ppm) to reduce the risk of cancer or other adverse health effects which have been observed in laboratory animals. Drinking water which meets this standard is associated with little to none of this risk and should be considered safe.

(4) Vinyl chloride. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that vinyl chloride is a health concern at certain levels of exposure. This chemical is used in industry and is found in drinking water as a result of the breakdown of related solvents. The solvents are used as cleaners and degreasers of metals and generally get into drinking water by improper waste disposal. This chemical has been associated with significantly

increased risks of cancer among certain industrial workers who were exposed to relatively large amounts of this chemical during their working careers. This chemical has also been shown to cause cancer in laboratory animals when the animals are exposed at high levels over their lifetimes. Chemicals that cause increased risk of cancer among exposed industrial workers and in laboratory animals also may increase the risk of cancer in humans who are exposed at lower levels over long periods of time. EPA has set the enforceable drinking water standard for vinyl chloride at 0.002 part per million (ppm) to reduce the risk of cancer or other adverse health effects which have been observed in humans and laboratory animals. Drinking water which meets this standard is associated with little to none of this risk and should be considered safe.

(5) Benzene. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that benzene is a health concern at certain levels of exposure. This chemical is used as a solvent and degreaser of metals. It is also a major component of gasoline. Drinking water contamination generally results from leaking undergound gasoline and petroleum tanks or improper waste disposal. This chemical has been associated with significantly increased risks of leukemia among certain industrial workers who were exposed to relatively large amounts of this chemical during their working careers. This chemical has also been shown to cause cancer in laboratory animals when the animals are exposed at high levels over their lifetimes. Chemicals that cause increased risk of cancer among exposed industrial workers and in laboratory animals also may increase the risk of cancer in humans who are exposed at lower levels over long periods of time. EPA has set the enforceable drinking water standard for benzene at 0.005 parts per million (ppm) to reduce the risk of cancer or other adverse health effects which have been observed in humans and laboratory animals. Drinking water which meets this standard is associated with little to none of this risk and should be considered safe.

(6) 1,1-Dichloroethylene. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that 1,1dichloroethylene is a health concern at certain levels of exposure. This chemical is used in industry and is found in drinking water as a result of the breakdown of related solvents. The solvents are used as cleaners and degreasers of metals and generally get into drinking water by improper waste disposal. This chemical has been shown to cause liver and kidney damage in laboratory animals such as rats and mice when the animals are exposed at high levels over their lifetimes. Chemicals which cause adverse effects in laboratory animals also may cause adverse health effects in humans who are exposed at lower levels over long periods of time. EPA has set the enforceable drinking water standard for 1,1-dichloroethylene at 0.007 parts per million (ppm) to reduce the risk of these adverse health effects which have been observed in laboratory animals. Drinking water which meets this standard is associated with little to none of this risk and should be considered safe.

(7) Para-dichlorobenzene. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that para-dichlorobenzene is a health concern at certain levels of exposure. This chemical is a component of deodorizers, moth balls, and pesticides. It generally gets into drinking water by improper waste disposal. This chemical has been shown to cause liver and kidney damage in laboratory animals such as rats and mice when the animals are exposed to high levels over their lifetimes. Chemicals which cause adverse effects in laboratory animals also may cause adverse health effects in humans who are exposed at lower levels over long periods of time. EPA has set the enforceable drinking water standard for para-dichlorobenzene at 0.075 parts per million (ppm) to reduce the risk of these adverse health effects which have been observed in laboratory animals. Drinking water which meets this standard is associated with little to none of this risk and should be considered safe.

(8) 1,1,1-Trichloroethane. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that the 1,1,1-trichloroethane is a health concern at certain levels of exposure. This chemical is used as a cleaner and degreaser of metals. It generally gets into drinking water by improper waste disposal. This chemical has been shown to damage the liver, nervous system, and circulatory system of laboratory animals such as rats and mice when the animals are exposed at high levels over their lifetimes. Some industrial workers who were exposed to relatively large amounts of this chemical during their working careers also suffered damage to the liver, nervous system, and circulatory system. Chemicals which cause adverse effects among exposed industrial workers and in laboratory animals also may cause adverse health effects in humans who are exposed at lower levels over long periods of time. EPA has set the enforceable drinking water standard for 1,1,1trichloroethane at 0.2 parts per million (ppm) to protect against the risk of these adverse health effects which have been observed in humans and laboratory animals. Drinking water which meets this standard is associated with little to none of this risk and should be considered safe.

(9) Fluoride.

[NOTE: EPA is not specifying language that must be included in a public notice for a violation of the fluoride maximum contaminant level in this section because §143.5 of this part includes the necessary information. See paragraph (f) of this section.]

(10) Microbiological contaminants (for use when there is a violation of the treatment technique requirements for filtration and disinfection in Subpart H of this part). The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that the presence of microbiological contaminants are a health concern at certain levels of exposure. If water is inadequately treated, microbiological contaminants in that water may cause disease. Disease symptoms may include diarrhea, cramps, nausea, and possibly jaundice, and any associated headaches and fatigue. These symptoms, however, are not just associated with disease-causing organisms in drinking water, but also may be caused by a number of factors other than your drinking water. EPA has set enforceable requirements for treating drinking water to reduce the risk of these adverse health effects. Treatment such as filtering and disinfecting the water removes or destroys microbiological contaminants. Drinking water which is treated to meet EPA requirements is associated with little to none of this risk and should be considered safe.

(11) Total coliforms (To be used when there is a violation of §141.63(a), and not a violation of §141.63(b)). The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that the presence of total coliforms is a possible health concern. Total coliforms are common in the environment and are generally not harmful themselves. The presence of these bacteria in drinking water, however, generally is a result of a problem with water treatment or the pipes which distribute the water, and indicates that the water may be contaminated with organisms that can cause disease. Disease symptoms may include diarrhea, cramps, nausea, and possibly jaundice, and any associated headaches and fatigue. These symptoms, however, are not just associated with disease-causing organisms in drinking water, but also may be caused by a number of factors other than your drinking water. EPA has set an enforceable drinking water standard for total coliforms to reduce the risk of these adverse health effects. Under this standard, no more than 5.0 percent of the samples collected during a month can contain these bacteria, except that systems collecting fewer than 40 samples/month that have one total coliform-positive sample per month are not violating the standard. Drinking water which meets this standard is usually not associated with a health risk from disease-causing bacteria and should be considered safe.

(12) Fecal Coliforms/E. coli (To be used when there is a violation of §141.63(b) or both §141.63 (a) and (b)). The United States Environmental Protection Agency (EPA) sets drinking water

standards and has determined that the presence of fecal coliforms or *E. coli* is a serious health concern. Fecal coliforms and E. coli are generally not harmful themselves, but their presence in drinking water is serious because they usually are associated with sewage or animal wastes. The presence of these bacteria in drinking water is generally a result of a problem with water treatment or the pipes which distribute the water, and indicates that the water may be contaminated with organisms that can cause disease. Disease symptoms may include diarrhea, cramps, nausea, and possibly jaundice, and associated headaches and fatigue. These symptoms, however, are not just associated with disease-causing organisms in drinking water, but also may be caused by a number of factors other than your drinking water. EPA has set an enforceable drinking water standard for fecal coliforms and E. coli to reduce the risk of these adverse health effects. Under this standard all drinking water samples must be free of these bacteria. Drinking water which meets this standard is associated with little or none of this risk and should be considered safe. State and local health authorities recommend that consumers take the following precautions: [To be inserted by the public water system, according to instructions from State or local authorities].

(13) Lead. The United States Environmental Protection Agency (EPA) sets

deficits in the attention span, hearing, and learning abilities of children, and slight increases in the blood pressure of some adults. EPA's national primary drinking water regulation requires all public water systems to optimize corrosion control to minimize lead contamination resulting from the corrosion of plumbing materials. Public water systems serving 50,000 people or fewer that have lead concentrations below 15 parts per billion (ppb) in more than 90% of tap water samples (the EPA "action level") have optimized their corrosion control treatment. Any water system that exceeds the action level must also monitor their source water to determine whether treatment to remove lead in source water is needed. Any water system that continues to exceed the action level after installation of corrosion control and/or source water treatment must eventually replace all lead service lines contributing in excess of 15 (ppb) of lead to drinking water. Any water system that exceeds the action level must also undertake a public education program to inform consumers of ways they can reduce their exposure to potentially high levels of lead in drinking water.

(14) Copper. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that copper is a health concern at certain exposure levels. Copper, a reddish-brown metal, is often used to plumb residential and commercial structures that are connected to water distribution systems. Copper contaminating drinking water as a corrosion byproduct occurs as the result of the corrosion of copper pipes that remain in contact with water for a prolonged period of time. Copper is an essential nutrient, but at high doses it has been shown to cause stomach and intestinal distress, liver and kidney damage, and anemia. Persons with Wilson's disease may be at a higher risk of health effects due to copper than the general public. EPA's national primary drinking water regulation requires all public water systems to install optimal corrosion control to minimize copper contamination resulting from the corrosion of plumbing materials. Public water systems serving 50,000 people or fewer that have copper concentrations

below 1.3 parts per million (ppm) in more than 90% of tap water samples (the EPA "action level") are not required to install or improve their treatment. Any water system that exceeds the action level must also monitor their source water to determine whether treatment to remove copper in source water is needed.

(15) Asbestos. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that asbestos fibers greater than 10 micrometers in length are a health concern at certain levels of exposure. Asbestos is a naturally occurring mineral. Most asbestos fibers in drinking water are less than 10 micrometers in length and occur in drinking water from natural sources and from corroded asbestos-cement pipes in the distribution system. The major uses of asbestos were in the production of cements, floor tiles, paper products, paint, and caulking; in transportationrelated applications; and in the production of textiles and plastics. Asbestos was once a popular insulating and fire retardent material. Inhalation studies have shown that various forms of asbestos have produced lung tumors in laboratory animals. The available information on the risk of developing gastrointestinal tract cancer associated with the ingestion of asbestos from drinking water is limited. Ingestion of intermediate-range chrysotile asbestos fibers greater than 10 micrometers in length is associated with causing benign tumors in male rats. Chemicals that cause cancer in laboratory animals also may increase the risk of cancer in humans who are exposed over long periods of time. EPA has set the drinking water standard for asbestos at 7 million long fibers per liter to reduce the potential risk of cancer or other adverse health effects which have been observed in laboratory animals. Drinking water which meets the EPA standard is associated with little to none of this risk and should be considered safe with respect to asbestos.

(16) Barium. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that barium is a health concern at certain levels of exposure.

This inorganic chemical occurs naturally in some aquifers that serve as sources of ground water. It is also used in oil and gas drilling muds, automotive paints, bricks, tiles and jet fuels. It generally gets into drinking water after dissolving from naturally occurring minerals in the ground. This chemical may damage the heart and cardiovascular system, and is associated with high blood pressure in laboratory animals such as rats exposed to high levels during their lifetimes. In humans, EPA believes that effects from barium on blood pressure should not occur below 2 parts per million (ppm) in drinking water. EPA has set the drinking water standard for barium at 2 parts per million (ppm) to protect against the risk of these adverse health effects. Drinking water that meets the EPA standard is associated with little to none of this risk and is considered safe with respect to barium.

(17) Cadmium. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that cadmium is a health concern at certain levels of exposure. Food and the smoking of tobacco are common sources of general exposure. This inorganic metal is a contaminant in the metals used to galvanize pipe. It generally gets into water by corrosion of galvanized pipes or by improper waste disposal. This chemical has been shown to damage the kidney in animals such as rats and mice when the animals are exposed at high levels over their lifetimes. Some industrial workers who were exposed to relatively large amounts of this chemical during working careers also suffered damage to the kidney. EPA has set the drinking water standard for cadmium at 0.005 parts per million (ppm) to protect against the risk of these adverse health effects. Drinking water that meets the EPA standard is associated with little to none of this risk and is considered safe with respect to cadmium.

(18) Chromium. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that chromium is a health concern at certain levels of exposure. This inorganic metal occurs naturally in the ground and is often used in the electroplating of metals. It generally

gets into water from runoff from old mining operations and improper waste disposal from plating operations. This chemical has been shown to damage the kidney, nervous system, and the circulatory system of laboratory animals such as rats and mice when the animals are exposed at high levels. Some humans who were exposed to high levels of this chemical suffered liver and kidney damage, dermatitis and respiratory problems. EPA has set the drinking water standard for chromium at 0.1 parts per million (ppm) to protect against the risk of these adverse health effects. Drinking water that meets the EPA standard is associated with little to none of this risk and is considered safe with respect to chromium.

(19) Mercury. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that mercury is a health concern at certain levels of exposure. This inorganic metal is used in electrical equipment and some water pumps. It usually gets into water as a result of improper waste disposal. This chemical has been shown to damage the kidney of laboratory animals such as rats when the animals are exposed at high levels over their lifetimes. EPA has set the drinking water standard for mercury at 0.002 parts per million (ppm) to protect against the risk of these adverse health effects. Drinking water that meets the EPA standard is associated with little to none of this risk and is considered safe with respect to mercury.

(20) Nitrate. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that nitrate poses an acute health concern at certain levels of exposure. Nitrate is used in fertilizer and is found in sewage and wastes from human and/or farm animals and generally gets into drinking water from those activities. Excessive levels of nitrate in drinking water have caused serious illness and sometimes death in infants under six months of age. The serious illness in infants is caused because nitrate is converted to nitrite in the body. Nitrite interferes with the oxygen carrying capacity of the child's blood. This is an acute disease in that symptoms can develop rapidly in infants. In most cases, health deteriorates over a period of days. Symptoms include shortness of breath and blueness of the skin. Clearly, expert medical advice should be sought immediately if these symptoms occur. The purpose of this notice is to encourage parents and other responsible parties to provide infants with an alternate source of drinking water. Local and State health authorities are the best source for information concerning alternate sources of drinking water for infants. EPA has set the drinking water standard at 10 parts per million (ppm) for nitrate to protect against the risk of these adverse effects. EPA has also set a drinking water standard for nitrite at 1 ppm. To allow for the fact that the toxicity of nitrate and nitrite are additive, EPA has also established a standard for the sum of nitrate and nitrite at 10 ppm. Drinking water that meets the EPA standard is associated with little to none of this risk and is considered safe with respect to nitrate.

(21) Nitrite. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that nitrite poses an acute health concern at certain levels of exposure. This inorganic chemical is used in fertilizers and is found in sewage and wastes from humans and/or farm animals and generally gets into drinking water as a result of those activities. While excessive levels of nitrite in drinking water have not been observed, other sources of nitrite have caused serious illness and sometimes death in infants under six months of age. The serious illness in infants is caused because nitrite interferes with the oxygen carrying capacity of the child's blood. This is an acute disease in that symptoms can develop rapidly. However, in most cases, health deteriorates over a period of days. Symptoms include shortness of breath and blueness of the skin. Clearly, expert medical advice should be sought immediately if these symptoms occur. The purpose of this notice is to encourage parents and other responsible parties to provide infants with an alternate source of drinking water. Local and State health authorities are the best source for information concerning alternate sources of drinking water for infants. EPA has set the drinking water standard at 1 part per million (ppm) for nitrite to protect against the risk of these adverse effects. EPA has also set a drinking water standard for nitrate (converted to nitrite in humans) at 10 ppm and for the sum of nitrate and nitrite at 10 ppm. Drinking water that meets the EPA standard is associated with little to none of this risk and is considered safe with respect to nitrite.

(22) Selenium. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that selenium is a health concern at certain high levels of exposure. Selenium is also an essential nutrient at low levels of exposure. This inorganic chemical is found naturally in food and soils and is used in electronics, photocopy operations, the manufacture of glass, chemicals, drugs, and as a fungicide and a feed additive. In humans, exposure to high levels of selenium over a long period of time has resulted in a number of adverse health effects, including a loss of feeling and control in the arms and legs. EPA has set the drinking water standard for selenium at 0.05 parts per million (ppm) to protect against the risk of these adverse health effects. Drinking water that meets the EPA standard is associated with little to none of this risk and is considered safe with respect to selenium.

(23) Acrylamide. The United States Protection Environmental (EPA) sets drinking water standards and has determined that acrylamide is a health concern at certain levels of exposure. Polymers made from acrylamide are sometimes used to treat water supplies to remove particulate contaminants. Acrylamide has been shown to cause cancer in laboratory animals such as rats and mice when the animals are exposed at high levels over their lifetimes. Chemicals that cause cancer in laboratory animals also may increase the risk of cancer in humans who are exposed over long periods of time. Sufficiently large doses of acrylamide are known to cause neurological injury. EPA has set the drinking water standard for acrylamide using a treatment technique to reduce the risk of cancer or other adverse

health effects which have been observed in laboratory animals. This treatment technique limits the amount of acrylamide in the polymer and the amount of the polymer which may be added to drinking water to remove particulates. Drinking water systems which comply with this treatment technique have little to no risk and are considered safe with respect to acrylamide.

(24) Alachlor. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that alachlor is a health concern at certain levels of exposure. This organic chemical is a widely used pesticide. When soil and climatic conditions are favorable, alachlor may get into drinking water by runoff into surface water or by leaching into ground water. This chemical has been shown to cause cancer in laboratory animals such as rats and mice when the animals are exposed at high levels over their lifetimes. Chemicals that cause cancer in laboratory animals also may increase the risk of cancer in humans who are exposed over long periods of time. EPA has set the drinking water standard for alachlor at 0.002 parts per million (ppm) to reduce the risk of cancer or other adverse health effects which have been observed in laboratory animals. Drinking water that meets this standard is associated with little to none of this risk and is considered safe with respect to alachlor.

(25) Aldicarb. The United States Environmental Protection Agency (EPA)

risk and is considered safe with respect to aldicarb sulfone.

(28) Atrazine. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that atrazine is a health concern at certain levels of exposure. This organic chemical is a herbicide. When soil and climatic conditions are favorable, atrazine may get into drinking water by runoff into surface water or by leaching into ground water. This chemical has been shown to affect offspring of rats and the heart of dogs. EPA has set the drinking water standard for atrazine at 0.003 parts per million (ppm) to protect against the risk of these adverse health effects. Drinking water that meets the EPA standard is associated with little to none of this risk and is considered safe with respect to atrazine.

(29) Carbofuran. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that carbofuran is a health concern at certain levels of exposure. This organic chemical is a pesticide. When soil and climatic conditions are favorable, carbofuran may get into drinking water by runoff into surface water or by leaching into ground water. This chemical has been shown to damage the nervous and reproductive systems of laboratory animals such as rats and mice exposed at high levels over their lifetimes. Some humans who were exposed to relatively large amounts of this chemical during their working careers also suffered damage to the nervous system. Effects on the nervous system are generally rapidly reversible. EPA has set the drinking water standard for carbofuran at 0.04 parts per million (ppm) to protect against the risk of these adverse health effects. Drinking water that meets the EPA standard is associated with little to none of this risk and is considered safe with respect carbofuran.

(30) Chlordane. The United States Environmental Protection Agency (EPA sets drinking water standards and has determined that chlordane is a health concern at certain levels of exposure. This organic chemical is a pesticide used to control termites. Chlordane is not very mobile in soils. It usually gets

into drinking water after application near water supply intakes or wells. This chemical has been shown to cause cancer in laboratory animals such as rats and mice when the animals are exposed at high levels over their lifetimes. Chemicals that cause cancer in laboratory animals also may increase the risk of cancer in humans who are exposed over long periods of time. EPA has set the drinking water standard for chlordane at 0.002 parts per million (ppm) to reduce the risk of cancer or other adverse health effects which have been observed in laboratory animals. Drinking water that meets the EPA standard is associated with little to none of this risk and is considered safe with respect to chlordane.

(31) Dibromochloropropane (DBCP). The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that DBCP is a health concern at certain levels of exposure. This organic chemical was once a popular pesticide. When soil and climatic conditions are favorable, dibromochloropropane may get into drinking water by runoff into surface water or by leaching into ground water. This chemical has been shown to cause cancer in laboratory animals such as rats and mice when the animals are exposed at high levels over their lifetimes. Chemicals that cause cancer in laboratory animals also may increase the risk of cancer in humans who are exposed over long periods of time. EPA has set the drinking water standard for DBCP at 0.0002 parts per million (ppm) to reduce the risk of cancer or other adverse health effects which have been observed in laboratory animals. Drinking water that meets the EPA standard is associated with little to none of this risk and is considered safe with respect to DBCP.

(32) o-Dichlorobenzene. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that o-dichlorobenzene is a health concern at certain levels of exposure. This organic chemical is used as a solvent in the production of pesticides and dyes. It generally gets into water by improper waste disposal. This chemical has been shown to damage the liver, kidney and the blood cells of laboratory animals

such as rats and mice exposed to high levels during their lifetimes. Some industrial workers who were exposed to relatively large amounts of this chemical during working careers also suffered damage to the liver, nervous system, and circulatory system. EPA has set the drinking water standard for odichlorobenzene at 0.6 parts per million (ppm) to protect against the risk of these adverse health effects. Drinking water that meets the EPA standard is associated with little to none of this risk and is considered safe with respect to o-dichlorobenzene.

(33) cis-1,2-Dichloroethylene. The United States Environmental Protection Agency (EPA) establishes drinking water standards and has determined that cis-1,2-dichloroethylene is a health concern at certain levels of exposure. This organic chemical is used as a solvent and intermediate in chemical production. It generally gets into water by improper waste disposal. This chemical has been shown to damage the liver, nervous system, and circulatory system of laboratory animals such as rats and mice when exposed at

Environmental Protection Agency

EPA has set the drinking water standard for 2,4-D at 0.07 parts per million (ppm) to protect against the risk of these adverse health effects. Drinking water that meets the EPA standard is associated with little to none of this risk and is considered safe with respect to 2,4-D.

(37) *Epichlorohydrin.* The United tates Environmental Protection States Agency (EPA) sets drinking water standards and has determined that epichlorohydrin is a health concern at certain levels of exposure. Polymers made from epichlorohydrin are sometimes used in the treatment of water supplies as a flocculent to remove particulates. Epichlorohydrin generally gets into drinking water by improper use of these polymers. This chemical has been shown to cause cancer in laboratory animals such as rats and mice when the animals are exposed at high levels over their lifetimes. Chemicals that cause cancer in laboratory animals also may increase the risk of cancer in humans who are exposed over long periods of time. EPA has set the water standard drinking epichlorohydrin using a treatment technique to reduce the risk of cancer or other adverse health effects which have been observed in laboratory animals. This treatment technique limits the amount of epichlorohydrin in the polymer and the amount of the polymer which may be added to drinking water as a flocculent to remove particulates. Drinking water systems which comply with this treatment technique have little to no risk and are consid-

risk and is considered safe with respect to heptachlor.

(41) Heptachlor epoxide. The United Environmental Protection States Agency (EPA) sets drinking water standards and has determined that heptachlor epoxide is a health concern at certain levels of exposure. This organic chemical was once a popular pesticide. When soil and climatic conditions are favorable, heptachlor expoxide may get into drinking water by runoff into surface water or by leaching into ground water. This chemical has been shown to cause cancer in laboratory animals such as rats and mice when the animals are exposed at high levels over their lifetimes. Chemicals that cause cancer in laboratory animals also may increase the risk of cancer in humans who are exposed over long periods of time. EPA has set the drinking water standards for heptachlor epoxide at 0.0002 part per million (ppm) to reduce the risk of cancer or other adverse health effects which have been observed in laboratory animals. Drinking water that meets this standard is associated with little to none of this risk and is considered safe with respect to heptachlor epoxide.

(42) Lindane. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that lindane is a health concern at certain levels of exposure. This organic chemical is used as a pesticide. When soil and climatic conditions are favorable, lindane may get into drinking water by runoff into surface water or by leaching into ground water. This chemical has been shown to damage the liver, kidney, nervous system, and immune system of laboratory animals such as rats, mice and dogs exposed at high levels during their lifetimes. Some humans who were exposed to relatively large amounts of this chemical also suffered damage to the nervous system and circulatory system. EPA has established the drinking water standard for lindane at 0.0002 part per million (ppm) to protect against the risk of these adverse health effects. Drinking water that meets the EPA standard is associated with little to none of this risk and is considered safe with respect to lindane.

(43) Methoxychlor. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that methoxychlor is a health concern at certain levels of exposure. This organic chemical is used as a pesticide. When soil and climatic conditions are favorable, methoxychlor may get into drinking water by runoff into surface water or by leaching into ground water. This chemical has been shown to damage the liver, kidney, nervous system, and reproductive system of laboratory animals such as rats exposed at high levels during their lifetimes. It has also been shown to produce growth retardation in rats. EPA has set the drinking water standard for methoxychlor at 0.04 part per million (ppm) to protect against the risk of these adverse health effects. Drinking water that meets the EPA standard is associated with little to none of this risk and is considered safe with respect to methoxychlor.

(44) Monochlorobenzene. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that monochlorobenzene is a health concern at certain levels of exposure. This organic chemical is used as a solvent. It generally gets into water by improper waste disposal. This chemical has been shown to damage the liver, kidney and nervous system of laboratory animals

Environmental Protection Agency

shown to cause cancer in laboratory animals such as rats and mice when the animals are exposed at high levels over their lifetimes. Chemicals that cause cancer in laboratory animals also may increase the risk of cancer in humans who are exposed over long periods of time. EPA has set the drinking water standard for PCBs at 0.0005 part per million (ppm) to reduce the risk of cancer or other adverse health effects which have been observed in laboratory animals. Drinking water that meets this standard is associated with little to none of this risk and is considered safe with respect to PCBs.

(46) Pentachlorophenol. The United States Environmental Protection (EPA) sets drinking water Agency standards and has determined that pentachlorophenol is a health concern at certain levels of exposure. This organic chemical is used as a wood preservative, herbicide, disinfectant, and defoliant. It generally gets into drinking water by runoff into surface water or leaching into ground water. This chemical has been shown to produce adverse reproductive effects and to damage the liver and kidneys of laboratory animals such as rats exposed to high levels during their lifetimes. Some humans who were exposed to relatively large amounts of this chemical also suffered damage to the liver and kidneys. This chemical has been shown to cause cancer in laboratory animals such as rats and mice when the animals are exposed to high levels over their lifetimes. Chemicals that cause cancer in laboratory animals also may increase the risk of cancer in humans who are exposed over long periods of time. EPA has set the drinking water standard for pentachlorophenol at 0.001 parts per million (ppm) to protect against the risk of cancer or other adverse health effects. Drinking water that meets the EPA standard is associated with little to none of this risk and is considered safe with respect to pentachlorophenol.

Some industrial workers who were exposed to relatively large amounts of this chemical during working careers also suffered damage to the liver, kidney and nervous system. EPA has set the drinking water standard for toluene at 1 part per million (ppm) to protect against the risk of adverse health effects. Drinking water that meets the EPA standard is associated with little to none of this risk and is considered safe with respect to toluene.

(50) *Toxaphene*. The United States nvironmental Protection Agency Environmental (EPA) sets drinking water standards and has determined that toxaphene is a health concern at certain levels of exposure. This organic chemical was once a pesticide widely used on cotton, corn, soybeans, pineapples and other crops. When soil and climatic conditions are favorable, toxaphene may get into drinking water by runoff into surface water or by leaching into ground water. This chemical has been shown to cause cancer in laboratory animals such as rats and mice when the animals are exposed at high levels over their lifetimes. Chemicals that cause cancer in laboratory animals also may increase the risk of cancer in humans who are exposed over long periods of time. EPA has set the drinking water standard for toxaphene at 0.003 part per million (ppm) to reduce the risk of cancer or other adverse health effects which have been observed in laboratory animals. Drinking water that meets this standard is associated with little to none of this risk and is considered safe with respect to toxaphene.

(51) 2,4,5-TP. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that 2,4,5-TP is a health concern at certain levels of exposure.

little to none of this risk and should be considered safe with respect to antimony.

(54) Beryllium. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that beryllium is a health concern at certain levels of exposure. This inorganic metal occurs naturally in soils, ground water and surface waters and is often used in electrical equipment and electrical components. It generally gets into water from runoff from mining operations, discharge from processing plants and improper waste disposal. Beryllium compounds have been associated with damage to the bones and lungs and induction of cancer in laboratory animals such as rats and mice when the animals are exposed at high levels over their lifetimes. There is limited evidence to suggest that beryllium may pose a cancer risk via drinking water exposure. Therefore, EPA based the health assessment on noncancer effects with an extra uncertainty factor to account for possible carcinogenicity. Chemicals that cause cancer in laboratory animals also may increase the risk of cancer in humans who are exposed over long periods of time. EPA has set the drinking water standard for beryllium at 0.004 part per million (ppm) to protect against the risk of these adverse health effects. Drinking water which meets the EPA standard is associated with little to none of this risk and should be considered safe with respect to beryllium.

(55) Cyanide. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that cyanide is a health concern at certain levels of exposure. This inorganic chemical is used in electroplating, steel processing, plastics, synthetic fabrics and fertilizer products. It usually gets into water as a result of improper waste disposal. This chemical has been shown to damage the spleen, brain and liver of humans fatally poisoned with cyanide. EPA has set the drinking water standard for cyanide at 0.2 parts per million (ppm) to protect against the risk of these adverse health effects. Drinking water which meets the EPA standard is associated with little to none of this risk and should be considered safe with respect to cyanide.

(56) [Reserved]

(57) Thallium. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that thallium is a health concern at certain high levels of exposure. This inorganic metal is found naturally in soils and is used in electronics, pharmaceuticals, and the manufacture of glass and alloys. This chemical has been shown to damage the kidney, liver, brain and intestines of laboratory animals when the animals are exposed at high levels over their lifetimes. EPA has set the drinking water standard for thallium at 0.002 parts per million (ppm) to protect against the risk of these adverse health effects. Drinking water which meets the EPA standard is associated with little to none of this risk and should be considered safe with respect to thallium.

(58)Benzo[a]pyrene. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that benzo[a]pyrene is a health concern at certain levels of exposure. Cigarette smoke and charbroiled meats are common source of general exposure. The major source of benzo[a]pyrene in drinking water is the leaching from coal tar lining and sealants in water storage tanks. This chemical has been shown to cause cancer in animals such as rats and mice when the animals are exposed at high levels. EPA has set the drinking water standard benzo[a]pyrene at 0.0002 parts per million (ppm) to protect against the risk of cancer. Drinking water which meets the EPA standard is associated with little to none of this risk and should be considered safe with respect benzo[a]pyrene.

(59) Dalapon. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that dalapon is a health concern at certain levels of exposure. This organic chemical is a widely used herbicide. It may get into drinking water after application to control grasses in crops, drainage ditches and along railroads. This chemical has been shown to cause damage to the kidney

and liver in laboratory animals when the animals are exposed to high levels over their lifetimes. EPA has set the drinking water standard for dalapon at 0.2 parts per million (ppm) to protect against the risk of these adverse health effects. Drinking water which meets the EPA standard is associated with little to none of this risk and should be considered safe with respect to dalapon.

(60) Dichloromethane. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that dichloromethane (methylene chloride) is a health concern at certain levels of exposure. This organic chemical is a widely used solvent. It is used in the manufacture of paint remover, as a metal degreaser and as an aerosol propellant. It generally gets into drinking water after improper discharge of waste disposal. This chemical has been shown to cause cancer in laboratory animals such as rats and mice when the animals are exposed at high levels over their lifetimes. Chemicals that cause cancer in laboratory animals also may increase the risk of cancer in humans who are exposed over long periods of time. EPA has set the drinking water standard for dichloromethane at $0.005\ parts\ per\ million\ (ppm)$ to reduce the risk of cancer or other adverse health effects which have been observed in laboratory animals. Drinking water which meets this standard is associated with little to none of this risk and should be considered safe with respect to dichloromethane.

(61) Di (2-ethylhexyl)adipate. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that di(2-ethylhexyl)adipate is a health concern at certain levels of exposure. Di(2ethylhexyl)adipate is a widely used plasticizer in a variety of products, including synthetic rubber, food packaging materials and cosmetics. It may get into drinking water after improper waste disposal. This chemical has been shown to damage liver and testes in laboratory animals such as rats and mice exposed to high levels. EPA has set the drinking water standard for di(2-ethylhexyl)adipate at 0.4 parts per million (ppm) to protect against the risk of adverse health effects. Drinking water which meets the EPA standards is associated with little to none of this risk and should be considered safe with respect to di(2-ethylhexyl)adipate.

Di(2-ethylhexyl)phthalate. United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that di(2-ethylhexyl)phthalate is a health concern at certain levels of exposure. Di(2-ethylhexyl)phthalate is a widely used plasticizer, which is primarily used in the production of polyvinyl chloride (PVC) resins. It may get into drinking water after improper waste disposal. This chemical has been shown to cause cancer in laboratory animals such as rats and mice exposed to high levels over their lifetimes. EPA has set the drinking water standard for di(2ethylhexyl)phthalate at 0.006 parts per million (ppm) to reduce the risk of cancer or other adverse health effects which have been observed in laboratory animals. Drinking water which meets the EPA standard is associated with little to none of this risk and should be considered safe with respect to di(2ethylhexyl)phthalate.

(63) Dinoseb. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that dinoseb is a health concern at certain levels of exposure. Dinoseb is a widely used pesticide and generally gets into drinking water after application on orchards, vineyards and other crops. This chemical

has been shown to damage the liver, kidney and gastrointestinal tract and causes cataract formation in laboratory animals such as dogs and rats exposed at high levels over their lifetimes. EPA has set the drinking water standard for diquat at 0.02 parts per million (ppm) to protect against the risk of these adverse health effects. Drinking water which meets the EPA standard is associated with little to none of this risk and should be considered safe with respect to diquat.

(65) Endothall. The United States Environmental Protection Agency (EPA) has determined that endothall is a health concern at certain levels of exposure. This organic chemical is a herbicide used to control terrestrial and aquatic weeds. It may get into water by runoff into surface water. This chemical has been shown to damage the liver, kidney, gastrointestinal tract and reproductive system of laboratory animals such as rats and mice exposed at high levels over their lifetimes. EPA has set the drinking water standard for endothall at 0.1 parts per

has been shown to damage the kidney and the stomach of laboratory animals when exposed at high levels over their lifetimes. EPA has set the drinking water standard for hexachlorocyclopentadiene at 0.05 parts per million (ppm) to protect against the risk of these adverse health effects. Drinking water which meets the EPA standard is associated with

exposed to high levels during their lifetimes. EPA has set the drinking water standard for 1,1,2-trichloroethane at 0.005 parts per million (ppm) to protect against the risk of these adverse health effects. Drinking water which meets the EPA standard is associated with little to none of this risk and should be considered safe with respect to 1,1,2-trichloroethane.

(75) 2,3,7,8-TCDD (Dioxin). The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that dioxin is a health concern at certain levels of exposure. This organic chemical is an impurity in the production of some pesticides. It may get into drinking water by industrial discharge of wastes. This chemical has been shown to cause cancer in laboratory animals such as rats and mice when the animals are exposed at high levels over their lifetimes. Chemicals that cause cancer in laboratory animals also may increase the risk of cancer in humans who are exposed over long periods of time. EPA has set the drinking water standard for dioxin at 0.00000003 parts per million (ppm) to reduce the risk of cancer or other adverse health effects which have been observed in laboratory animals. Drinking water which meets this standard is associated with little to none of this risk and should be considered safe with respect to dioxin.

(f) Public notices for fluoride. Notice of violations of the maximum contaminant level for fluoride, notices of variances and exemptions from the maximum contaminant level for fluoride, and notices of failure to comply with variance and exemption schedules for the maximum contaminant level for fluoride shall consist of the public notice prescribed in §143.5(b), plus a description of any steps which the system is taking to come into compliance.

(g) Public notification by the State. The State may give notice to the public required by this section on behalf of the owner or operator of the public water system if the State complies with the requirements of this section. However, the owner or operator of the public water system remains legally respon-

sible for ensuring that the requirements of this section are met.

[52 FR 41546, Oct. 28, 1987, as amended at 54 FR 15188, Apr. 17, 1989; 54 FR 27527, 27566, June 29, 1989; 55 FR 25064, June 19, 1990; 56 FR 3587, Jan. 30, 1991; 56 FR 26548, June 7, 1991; 56 FR 30279, July 1, 1991; 57 FR 31843, July 17, 1992; 59 FR 34323, July 1, 1994; 60 FR 33932, June 29, 1995]

§141.33 Record maintenance.

Any owner or operator of a public water system subject to the provisions of this part shall retain on its premises or at a convenient location near its premises the following records:

- (a) Records of bacteriological analyses made pursuant to this part shall be kept for not less than 5 years. Records of chemical analyses made pursuant to this part shall be kept for not less than 10 years. Actual laboratory reports may be kept, or data may be transferred to tabular summaries, provided that the following information is included:
- (1) The date, place, and time of sampling, and the name of the person who collected the sample;
- (2) Identification of the sample as to whether it was a routine distribution system sample, check sample, raw or process water sample or other special purpose sample;
 - (3) Date of analysis;

§141.34 [Reserved]

§141.35 Reporting and public notification for certain unregulated contaminants.

- (a) The requirements of this section only apply to the contaminants listed in §141.40.
- (b) The owner or operator of a community water system or non-transient, non-community water system who is required to monitor under §141.40 shall send a copy of the results of such monitoring within 30 days of receipt and any public notice under paragraph (d) of this section to the State.
- (c) The State, or the community water system or non-transient, non-community water system if the State has not adopted regulations equivalent to §141.40, shall furnish the following information to the Administrator for each sample analyzed under §141.40:
- (1) Results of all analytical methods, including negatives;
- (2) Name and address of the system that supplied the sample;
 - (3) Contaminant(s);
 - (4) Analytical method(s) used;
 - (5) Date of sample;
 - (6) Date of analysis.
- (d) The owner or operator shall notify persons served by the system of the availability of the results of sampling conducted under §141.40 by including a notice in the first set of water bills issued by the system after the receipt of the results or written notice within three months. The notice shall identify a person and supply the telephone number to contact for information on the monitoring results. For surface water systems, public notification is required only after the first quarter's monitoring and must include a statement that additional monitoring will be conducted for three more quarters with the results available upon request.

[52 FR 25714, July 8, 1987; 53 FR 25110, July 1, 1988]

Subpart E—Special Regulations, Including Monitoring Regulations and Prohibition on Lead Use

§141.40 Special monitoring for inorganic and organic contaminants.

(a) All community and non-transient, non-community water systems shall monitor for the contaminants listed in paragraph (e) in this section by date specified in Table 1:

TABLE 1—MONITORING SCHEDULE BY SYSTEM SIZE

Number of persons served	Monitoring to begin no later than—
Over 10,000	Jan. 1, 1988. Jan. 1, 1989. Jan. 1, 1991.

- (b) Surface water systems shall sample at points in the distribution system representative of each water source or at entry points to the distribution system after any application of treatment. The minimum number of samples is one year of quarterly samples per water source.
- (c) Ground water systems shall sample at points of entry to the distribution system representative of each well after any application of treatment. The minimum number of samples is one sample per entry point to the distribution system.
- (d) The State may require confirmation samples for positive or negative results.
- (e) Community water systems and non-transient, non-community water systems shall monitor for the following contaminants except as provided in paragraph (f) of this section:
- (1) Chloroform
- (2) Bromodichloromethane
- (3) Chlorodibromomethane
- (4) Bromoform
- (5) Dibromomethane
- (6) m-Dichlorobenzene
- (7) [Reserved]
- (8) 1,1-Dichloropropene
- (9) 1,1-Dichloroethane

Environmental Protection Agency

§ 141.40

- (10) 1,1,2,2-Tetrachloroethane(11) 1,3-Dichloropropane(12) Chloromethane

- (13) Bromomethane
- (14) 1,2,3-Trichloropropane (15) 1,1,1,2-Tetrachloroethane
- (16) Chloroethane
- (17) 2,2-Dichloropropane (18) o-Chlorotoluene (19) p-Chlorotoluene (20) Bromobenzene

- (21) 1,3-Dichloropropene (f) [Reserved]

 - (g) Analysis for the unregulated con-

point). Each sample must be taken at the same sampling point unless conditions make another sampling point more representative of each source or treatment plant.

(6) Surface water systems shall take a minimum of one sample at points in the distribution system that are representative of each source or at each entry point to the distribution system after treatment (hereafter called a sampling point). Each sample must be taken at the same sampling point unless conditions make another sampling point more representative of each source or treatment plant.

Note: For purposes of this paragraph, surface water systems include systems with a combination of surface and ground sources.

- (7) If the system draws water from more than one source and the sources are combined before distribution, the system must sample at an entry point to the distribution system during periods of normal operating conditions (i.e., when water representative of all sources is being used).
- (8) The State may require a confirmation sample for positive or negative results.
 - (9) The State may reduce the total

for the determination of sodium concentration levels; samples must be collected and analyzed annually for systems utilizing surface water sources in whole or in part, and at least every three years for systems utilizing solely ground water sources. The minimum number of samples required to be taken by the system shall be based on the number of treatment plants used by the system, except that multiple wells drawing raw water from a single aquifer may, with the State approval, be considered one treatment plant for determining the minimum number of samples. The supplier of water may be required by the State to collect and analyze water samples for sodium more frequently in locations where the sodium content is variable.

(b) The supplier of water shall report to EPA and/or the State the results of the analyses for sodium within the first 10 days of the month following the month in which the sample results were received or within the first 10 days following the end of the required monitoring period as stipulated by the State, whichever of these is first. If more than annual sampling is required the supplier shall report the average sodium concentration within 10 days of

The manner and form of notice are specified in §141.34 of this part.

- (b) State enforcement—(1) Enforcement of prohibition. The requirements of paragraph (a)(1) of this section shall be enforced in all States effective June 19, 1988. States shall enforce such requirements through State or local plumbing codes, or such other means of enforcement as the State may determine to be appropriate.
- (2) Enforcement of public notice requirements. The requirements of paragraph (a)(2) of this section, shall apply in all States effective June 19, 1988.
- (c) *Penalties.* If the Administrator determines that a State is not enforcing the requirements of paragraph (a) of this section, as required pursuant to paragraph (b) of this section, the Administrator may withhold up to 5 percent of Federal funds available to that State for State program grants under section 1443(a) of the Act.
- (d) Definition of lead free. For purposes of this section, the term lead free
- (1) When used with respect to solders and flux refers to solders and flux containing not more than 0.2 percent lead, and
- (2) When used with respect to pipes and pipe fittings refers to pipes and pipe fittings containing not more than 8.0 percent lead.

[52 FR 20674, June 2, 1987]

Subpart F—Maximum Contaminant Level Goals

§141.50 Maximum contaminant level goals for organic contaminants.

- (a) MCLGs are zero for the following contaminants:
- (1) Benzene
- (2) Vinyl chloride
- (3) Carbon tetrachloride
- (4) 1,2-dichloroethane
- (5) Trichloroethylene
- (6) Acrylamide
- (7) Alachlor
- (8) Chlordane
- (9) Dibromochloropropane
- (10) 1,2-Dichloropropane
- (11) Epichlorohydrin
- (12) Ethylene dibromide
- (13) Heptachlor
- (14) Heptachlor epoxide
- (15) Pentachlorophenol

- (16) Polychlorinated biphenyls (PCBs)
- (17) Tetrachloroethylene
- (18) Toxaphene
- (19) Benzo[a]pyrene
- (20) Dichloromethane (methylene chloride)
- (21) Di(2-ethylhexyl)phthalate
- (22) Hexachlorobenzene
- (23) 2,3,7,8-TCDD (Dioxin)
- (b) MCLGs for the following contaminants are as indicated:

Contaminant	MCLG in mg/l
(1) 1,1-Dichloroethylene	0.007
(2) 1,1,1-Trichloroethane	0.20
(3) para-Dichlorobenzene	0.075
(4) Aldicarb	0.001
(5) Aldicarb sulfoxide	0.001
(6) Aldicarb sulfone	0.001
(7) Atrazine	0.003
(8) Carbofuran	0.04
(9) o-Dichlorobenzene	

Environmental Protection Agency

MCLG (mg/l)
.2
4.0
zero
0.002
10 (as Nitrogen).
1 (as Nitrogen).
10 (as Nitrogen).
0.05
.0005

[50 FR 47155, Nov. 14, 1985, as amended at 52 FR 20674, June 2, 1987; 56 FR 3593, Jan. 30, 1991; 56 FR 26548, June 7, 1991; 56 FR 30280, July 1, 1991; 57 FR 31846, July 17, 1992; 60 FR 33932, June 29, 1995]

§ 141.52 Maximum contaminant level goals for microbiological contaminants.

MCLGs for the following contaminants are as indicated:

Contaminant	MCLG
(1) Giardia lamblia(2) Viruses(3) Legionella(4) Total coliforms (including fecal coliforms and Escherichia coli).	zero zero zero zero.

[54 FR 27527, 27566, June 29, 1989; 55 FR 25064, June 19, 1990]

Subpart G—National Revised Primary Drinking Water Regulations: Maximum Contaminant Levels

§141.60 Effective dates.

(a) The effective dates for §141.61 are as follows:

- (1) The effective date for paragraphs (a)(1) through (a)(8) of §141.61 is January 9, 1989.
- (2) The effective date for paragraphs (a)(9) through (a)(18) and (c)(1) through (c)(18) of §141.61 is July 30, 1992.
- (3) The effective date for paragraphs (a)(19) through (a)(21), (c)(19) through (c)(25), and (c)(27) through (c)(33) of \$141.61 is January 17, 1994. The effective date of \$141.61(c)(26) is August 17, 1992.
- (b) The effective dates for \$141.62 are as follows:
- (1) The effective date of paragraph (b)(1) of §141.62 is October 2, 1987.
- (2) The effective date for paragraphs (b)(2) and (b)(4) through (b)(10) of §141.62 is July 30, 1992.
- (3) The effective date for paragraphs (b)(11) through (b)(15) of $\S 141.62$ is January 17, 1994.

[56 FR 3593, Jan. 30, 1991, as amended at 57 FR 31846, July 17, 1992; 59 FR 34324, July 1, 1994]

§141.61 Maximum contaminant levels for organic contaminants.

(a) The following maximum contaminant levels for organic contaminants apply to community and non-transient, non-community water systems.

CAS No.	Contaminant	MCL (mg/l)
(1) 75–01–4	Vinyl chloride	0.002
(2) 71–43–2	Benzene	0.005
(3) 56–23–5	Carbon tetrachloride	0.005
(4) 107–06–2	1,2-Dichloroethane	0.005
(5) 79–01–6	Trichloroethylene	0.005
6) 106–46–7	para-Dichlorobenzene	0.075
(7) 75–35–4	1,1-Dichloroethylene	0.007
8) 71–55–6	1,1,1-Trichloroethane	0.2
9) 156–59–2	cis-1,2-Dichloroethylene	0.07
10) 78–87–5	1,2-Dichloropropane	0.005
(11) 100–41–4	Ethylbenzene	0.7
12) 108–90–7	Monochlorobenzene	0.1
(13) 95–50–1	o-Dichlorobenzene	0.6
14) 100–42–5	Styrene	0.1
15) 127–18–4		0.005
16) 108–88–3		1
(17) 156–60–5	trans-1.2-Dichloroethylene	0

40 CFR Ch. I (7-1-96 Edition)

§ 141.61

(b) The Administrator, pursuant to section 1412 of the Act, hereby identifies as indicated in the Table below granular activated carbon (GAC), packed tower aeration (PTA), or oxidation (OX) as the best technology treat-

ment technique, or other means available for achieving compliance with the maximum contaminant level for organic contaminants identified in paragraphs (a) and (c) of this section:

BAT FOR ORGANIC CONTAMINANTS LISTED IN § 141.61 (a) AND (c)

CAS No. Contaminant GAC PTA OX/F1

Environmental Protection Agency

CAS No.	Contaminant	MCL (mg/l)
(1) 15972–60–8	Alachlor	0.002
(2) 116-06-3	Aldicarb	0.003
(3) 1646–87–3	Aldicarb sulfoxide	0.004
(4) 1646–87–4	Aldicarb sulfone	0.002
(5) 1912–24–9	Atrazine	0.003
(6) 1563–66–2	Carbofuran	0.04
(7) 57–74–9	Chlordane	0.002
(8) 96–12–8	Dibromochloropropane	0.0002
(9) 94–75–7	2,4-D	0.07
(10) 106–93–4	Ethylene dibromide	0.00005
(11) 76–44–8	Heptachlor	0.0004
(12) 1024–57–3	Heptachlor epoxide	0.0002
(13) 58–89–9	Lindane	0.0002
(14) 72–43–5	Methoxychlor	0.04
(15) 1336–36–3	Polychlorinated biphenyls	0.0005
(16) 87–86–5	Pentachlorophenol	0.001
(17) 8001–35–2	Toxaphene	0.003
(18) 93–72–1	2.4.5-TP	0.05
(19) 50–32–8	Benzo[a]pyrene	0.0002
(20) 75–99–0	Dalapon	0.2
(21) 103–23–1	Di(2-ethylhexyl) adipate	0.4
(22) 117–81–7	Di(2-ethylhexyl) phthalate	0.006
(23) 88–85–7	Dinoseb	0.007
(24) 85–00–7	Diquat	0.02
(25) 145–73–3	Endothall	0.1
(26) 72–20–8	Endrin	0.002
(27) 1071–53–6	Glyphosate	0.7
(28) 118–74–1	Hexacholorbenzene	0.001
(29) 77–47–4	Hexachlorocyclopentadiene	0.05
(30) 23135–22–0	Oxamyl (Vydate)	0.2
(31) 1918–02–1	Picloram	0.5
(32) 122–34–9	Simazine	0.004
(33) 1746–01–6	2,3,7,8-TCDD (Dioxin)	3×10 ⁻⁸
(33) 1740-01-0	2,3,1,0-1000 (DIUXIII)	3×10 °

[56 FR 3593, Jan. 30, 1991, as amended at 56 FR 30280, July 1, 1991; 57 FR 31846, July 17, 1992; 59 FR 34324, July 1, 1994]

§141.62 Maximum contaminant levels for inorganic contaminants.

(a) [Reserved]

(b) The maximum contaminant levels for inorganic contaminants specified in paragraphs (b)(2)—(6), (b)(10), and (b)(11)—(15) of this section apply to community water systems and non-transient, non-community water systems. The maximum contaminant level specified in paragraph (b)(1) of this section only applies to community water systems. The maximum contaminant levels specified in (b)(7), (b)(8), and (b)(9) of this section apply to community water systems; non-transient, non-community water systems; and transient non-community water systems.

Contaminant	MCL (mg/l)
(1) Fluoride(2) Asbestos	

BAT FOR INORGANIC COMPOUNDS LISTED IN SECTION 141.62(B)—Continued

Chemical Name	BAT(s)
Barium	5,6,7,9
Beryllium	1,2,5,6,7
Cadmium	2,5,6,7
Chromium	2,5,62,7
Cyanide	5,7,10
Mercury	21,4,61,71
Nickel	5,6,7
Nitrate	5,7,9
Nitrite	5,7
Selenium	1,23,6,7,9
Thallium	1,5

- $^{1}\,BAT$ only if influent Hg concentrations ${\leq}10\mu g/1.$ $^{2}\,BAT$ for Chromium III only.
- ³BAT for Selenium IV only.

Key to BATS in Table

- 1=Activated Alumina
- $2\hbox{=}Coagulation/Filtration$
- $3 = \bar{\text{Direct}}$ and Diatomite Filtration
- 4=Granular Activated Carbon
- 5=Ion Exchange
- 6=Lime Softening
- 7=Reverse Osmosis
- 8=Corrosion Control
- 9=Electrodialysis
- 10=Chlorine
- 11=Ultraviolet

[56 FR 3594, Jan. 30, 1991, as amended at 56 FR 30280, July 1, 1991; 57 FR 31847, July 17, 1992; 59 FR 34325, July 1, 1994; 60 FR 33932, June 29, 1995]

§141.63 Maximum contaminant levels (MCLs) for microbiological contaminants.

- (a) The MCL is based on the presence or absence of total coliforms in a sample, rather than coliform density.
- (1) For a system which collects at least 40 samples per month, if no more than 5.0 percent of the samples collected during a month are total coliform-positive, the system is in compliance with the MCL for total coliforms.
 - (2) For a system which collects fewer

water systems supplied by a ground water source under the direct influence of surface water. In addition, these regulations establish treatment technique requirements in lieu of maximum contaminant levels for the following contaminants: Giardia lamblia, viruses, heterotrophic plate count bacteria, Legionella, and turbidity. Each public water system with a surface water source or a ground water source under the direct influence of surface water must provide treatment of that source water that complies with these treatment technique requirements. The treatment technique requirements consist of installing and properly operating water treatment processes which reliably achieve:

- (1) At least 99.9 percent (3-log) removal and/or inactivation of *Giardia lamblia* cysts between a point where the raw water is not subject to recontamination by surface water runoff and a point downstream before or at the first customer; and
- (2) At least 99.99 percent (4-log) removal and/or inactivation of viruses between a point where the raw water is not subject to recontamination by surface water runoff and a point downstream before or at the first customer.
- (b) A public water system using a surface water source or a ground water source under the direct influence of surface water is considered to be in compliance with the requirements of paragraph (a) of this section if:
- (1) It meets the requirements for avoiding filtration in §141.71 and the disinfection requirements in §141.72(a); or
- (2) It meets the filtration requirements in \$141.73 and the disinfection requirements in \$141.72(b).
- (c) Each public water system using a surface water source or a ground water source under the direct influence of surface water must be operated by qualified personnel who meet the requirements specified by the State.

§141.71 Criteria for avoiding filtration.

A public water system that uses a surface water source must meet all of the conditions of paragraphs (a) and (b) of this section, and is subject to paragraph (c) of this section, beginning De-

cember 30, 1991, unless the State has determined, in writing pursuant to \$1412(b)(7)(C)(iii), that filtration is required. A public water system that uses a ground water source under the direct influence of surface water must or a 0.1325

not been more than two events in the past 12 months the system served water to the public, or more than five events in the past 120 months the system served water to the public, in which the turbidity level exceeded 5 NTU. An "event" is a series of consecutive days during which at least one turbidity measurement each day exceeds 5 NTU.

(b) Site-specific conditions. (1)(i) The public water system must meet the requirements of §141.72(a)(1) at least 11 of the 12 previous months that the system served water to the public, on an ongoing basis, unless the system fails to meet the requirements during 2 of the 12 previous months that the system served water to the public, and the State determines that at least one of these failures was caused by circumstances that were unusual and unpredictable.

(ii) The public water system must meet the requirements of §141.72(a)(2) at all times the system serves water to

- $\hbox{ (i) A review of the effectiveness of the watershed control program; } \\$
- (ii) A review of the physical condition of the source intake and how well it is protected;
- (iii) A review of the system's equipment maintenance program to ensure there is low probability for failure of the disinfection process;
- (iv) An inspection of the disinfection equipment for physical deterioration;
 - (v) A review of operating procedures;
- (vi) A review of data records to ensure that all required tests are being conducted and recorded and disinfection is effectively practiced; and
- (vii) Identification of any improvements which are needed in the equipment, system maintenance and operation, or data collection.
- (4) The public water system must not have been identified as a source of a waterborne disease outbreak, or if it

(1) The disinfection treatment must be sufficient to ensure at least 99.9 percent (3-log) inactivation of Giardia lamblia cysts and 99.99 percent (4-log) inactivation of viruses, every day the system serves water to the public, except any one day each month. Each day a system serves water to the public, the public water system must calculate the CT value(s) from the system's treatment parameters, using the procedure specified in §141.74(b)(3), and determine whether this value(s) is sufficient to achieve the specified inactivation rates for Giardia lamblia cysts and viruses. If a system uses a disinfectant other than chlorine, the system may demonstrate to the State, through the use of a State-approved protocol for onsite disinfection challenge studies or other information satisfactory to the State, that $CT_{99.9}$ values other than those specified in Tables 2.1 and 3.1 in §141.74(b)(3) or other operational parameters are adequate to demonstrate that the system is achieving minimum inactivation rates required by paragraph (a)(1) of this section.

(2) The disinfection system must have either (i) redundant components, including an auxiliary power supply with automatic start-up and alarm to ensure that disinfectant application is maintained continuously while water is being delivered to the distribution system, or (ii) automatic shut-off of delivery of water to the distribution system whenever there is less than 0.2 mg/ l of residual disinfectant concentration in the water. If the State determines that automatic shut-off would cause unreasonable risk to health or interfere with fire protection, the system must comply with paragraph (a)(2)(i) of this section.

(3) The residual disinfectant concentration in the water entering the distribution system, measured as specified in $\S141.74(a)(5)$ and (b)(5), cannot be less than 0.2 mg/l for more than 4 hours.

(4)(i) The residual disinfectant concentration in the distribution system, measured as total chlorine, combined chlorine, or chlorine dioxide, as specified in §141.74(a)(5) and (b)(6), cannot be undetectable in more than 5 percent of the samples each month, for any two consecutive months that the system

serves water to the public. Water in the distribution system with a heterotrophic bacteria concentration less than or equal to 500/ml, measured as heterotrophic plate count (HPC) as specified in §141.74(a)(3), is deemed to have a detectable disinfectant residual for purposes of determining compliance with this requirement. Thus, the value "V" in the following formula cannot exceed 5 percent in one month, for any two consecutive months.

$$V = \frac{c + d + e}{a + b} \times 100$$

where:

a=number of instances where the residual disinfectant concentration is measured:

b=number of instances where the residual disinfectant concentration is not measured but heterotrophic bacteria plate count (HPC) is measured;

c=number of instances where the residual disinfectant concentration is measured but not detected and no HPC is measured:

d=number of instances where the residual disinfectant concentration is measured but not detected and where the HPC is >500/ml; and

e=number of instances where the residual disinfectant concentration is not measured and HPC is >500/ml.

(ii) If the State determines, based on site-specific considerations, that a system has no means for having a sample transported and analyzed for HPC by a certified laboratory under the requisite time and temperature conditions specified by §141.74(a)(3) and that the system is providing adequate disinfection in the distribution system, the requirements of paragraph (a)(4)(i) of this section do not apply to that system.

(b) Disinfection requirements for public water systems which provide filtration. Each public water system that provides filtration treatment must provide disinfection treatment as follows.

(1) The disinfection treatment must be sufficient to ensure that the total treatment processes of that system achieve at least 99.9 percent (3-log) inactivation and/or removal of *Giardia lamblia* cysts and at least 99.99 percent (4-log) inactivation and/or removal of viruses, as determined by the State.

(2) The residual disinfectant concentration in the water entering the

Environmental Protection Agency

§ 141.73

distribution system, measured as specified in $\S141.74$ (a)(5) and (c)(2), cannot be less than 0.2 mg/l for more than 4 hours

(3)(i) The residual disinfectant concentration in the distribution system, measured as total chlorine, combined chlorine, or chlorine dioxide, as specified in §141.74 (a)(5) and (c)(3), cannot be undetectable in more than 5 percent of the samples each month, for any two consecutive months that the system serves water to the public. Water in the

- (2) The turbidity level of representative samples of a system's filtered water must at no time exceed 5 NTU, measured as specified in §141.74 (a)(4) and (c)(1).
- (c) Diatomaceous earth filtration. (1) For systems using diatomaceous earth filtration, the turbidity level of representative samples of a system's filtered water must be less than or equal to 1 NTU in at least 95 percent of the measurements taken each month, measured as specified in §141.74 (a)(4) and (c)(1).
- (2) The turbidity level of representative samples of a system's filtered water must at no time exceed 5 NTU, measured as specified in §141.74 (a)(4) and (c)(1).
- (d) Other filtration technologies. A public water system may use a filtration technology not listed in paragraphs (a)-(c) of this section if it demonstrates to the State, using pilot plant studies or other means, that the alternative filtration technology, in combination with disinfection treatment that meets the requirements of §141.72(b), consistently achieves 99.9 percent removal and/or inactivation of Giardia lamblia cysts and 99.99 percent removal and/or inactivation of viruses. For a system that makes this demonstration, the requirements of paragraph (b) of this section apply.

§141.74 Analytical and monitoring requirements.

(a) Analytical requirements. Only the analytical method(s) specified in this paragraph, or otherwise approved by EPA, may be used to demonstrate compliance with the requirements of §§141.71, 141.72, and 141.73. Measurements for pH, temperature, turbidity, and residual disinfectant concentrations must be conducted by a party approved by the State. Measurements for total coliforms, fecal coliforms, and HPC must be conducted by a laboratory certified by the State or EPA to do such analysis. Until laboratory certification criteria are developed for the analysis of HPC and fecal coliforms, any laboratory certified for total coliform analysis by EPA is deemed certified for HPC and fecal coliform analysis. The following procedures shall be performed in accordance with the publications listed in the following section. This incorporation by reference was approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the methods published in Standard Methods for the Examination of Water and Wastewater may be obtained from the American Public Health Association et al., 1015 Fifteenth Street, NW., Washington, DC 20005; copies of the Minimal Medium ONPG-MUG Method as set forth in the article "National Field Evaluation of a Defined Substrate Method for the Simultaneous Enumeration of Total Coliforms and Esherichia coli from Drinking Water: Comparison with the Standard Multiple Tube Fermentation Method" (Edberg et al.), Applied and Environmental Microbiology, Volume 54, pp. 1595-1601, June 1988 (as amended under Erratum, Applied and Environmental Microbiology, Volume 54, p. 3197, December, 1988), may be obtained from the American Water Works Association Research Foundation, 6666 West Quincy Avenue, Denver, Colorado, 80235; and copies of the Indigo Method as set forth in the article "Determination of Ozone in Water by the Indigo Method" (Bader and Hoigne), may be obtained from Ozone Science & Engineering, Pergamon Press Ltd., Fairview Park, Elmsford, New York 10523. Copies may be inspected at the U.S. Environmental Protection Agency, Room EB15, 401 M Street, SW., Washington, DC 20460 or at the Office of the Federal Register, 800 North Capitol Street, NW., suite 700, Washington, DC.

(1) Public water systems must conduct analysis of pH and temperature in accordance with one of the methods listed at §141.23(k)(1). Public water systems must conduct analysis of total coliforms, fecal coliforms, heterotrophic bacteria, and turbidity in accordance with one of the following analytical methods and by using analytical test procedures contained in *Technical Notes on Drinking Water Methods*, EPA-600/R-94-173, October 1994, which is available at NTIS PB95-104766.

Organism	Methodology	Citation 1	
Total Coliforms ² .	Total Coliform Fer- mentation Tech- nique 3,4,5.	9221A, B, C	

Organism	Methodology	Citation 1
	Total Coliform Membrane Filter Technique.	9222A, B, C
	ONPG-Mug Test 6	9223
Fecal Coliforms ²	Fecal Coliform Procedure 7.	9221E
	Fecal Coliform Membrane Filter Procedure.	9222D
Heterotrophic bac- teria 2.	Pour Plate method	9215B
Turbidity	Nephelometric Method.	2130B
	Nephelometric Method.	180.18
	Great Lakes Instru- ments.	Method 29

ments.

1 Except where noted, all methods refer to the 18th edition of Standard Methods for the Examination of Water and Wastewater, 1992, American Public Health Association, 1015 Fifteenth Street NW, Washington, D.C. 20005.

2 The time from sample collection to initiation of analysis may not exceed 8 hours. Systems are encouraged but not required to hold samples below 10°C during transit.

3 Lactose broth, as commercially available, may be used in lieu of lauryl tryptose broth, if the system conducts at least 25 parallel tests between this medium and lauryl tryptose broth using the water normally tested, and this comparison demonstrates that the false positive rate and false negative rate for total coliforms, using lactose broth, is less than 10 percent.

4 Media should cover inverted tubes at least one-half to two-thirds after the sample is added.

5 No requirement exists to run the completed phase on 10 percent of all total coliform-positive confirmed tubes.

6 The ONPG-MUG Test is also known as the Autoanalysis Colilert System.

7 A-1 Broth may be held up to three months in a tightly closed screwcap tube at 4°C.

System size (persons served)	Samples/ week1
≤500	1
501 to 3,300	2
3,301 to 10,000	3
10,001 to 25,000	4
>25,000	5

¹ Must be taken on separate days.

Also, one fecal or total coliform density measurement must be made every day the system serves water to the public and the turbidity of the source water exceeds 1 NTU (these samples count towards the weekly coliform sampling requirement) unless the State determines that the system, for logistical reasons outside the system's control, cannot have the sample analyzed within 30 hours of collection.

(2) Turbidity measurements as re-

TABLE 1.2—CT VALUES (CT 99.9) for 99.9 PERCENT INACTIVATION OF GIARDIA LAMBLIA CYSTS BY FREE CHLORINE AT 5.0 °C1—Confinued

Free re-				рН				
	(mg/l)	a 6.0	6.5	7.0	7.5	8.0	8.5	a 9.0
	3.0	126	151	182	221	268	324	389

¹These CT values achieve greater than a 99.99 percent inactivation of viruses. CT values between the indicated pH values may be determined by linear interpolation. CT values between the indicated temperatures of different tables may be determined by linear interpolation. If no interpolation is used, use the CT_{99.9} value at the lower temperature, and at the higher pH.

Table 1.3—CT Values (CT $_{99.9}$) for 99.9 Percent Inactivation of Giardia Lamblia Cysts by Free Chlorine at 10.0 $^{\circ}$ C¹

Free re-	рН						
(mg/l)	a 6.0	6.5	7.0	7.5	8.0	8.5	a 9.0
a 0.4	73	88	104	125	149	177	209
0.6	75	90	107	128	153	183	218
8.0	78	92	110	131	158	189	226
1.0	79	94	112	134	162	195	234
1.2	80	95	114	137	166	200	240
1.4	82	98	116	140	170	206	247
1.6	83	99	119	144	174	211	253

TABLE 1.6—CT Values (CT_{99.9}) FOR 99.9 PERCENT INACTIVATION OF GIARDIA LAMBLIA CYSTS BY FREE CHLORINE AT 25 °C¹ AND HIGHER—Continued

Free re-				рН			
(mg/l)	≤ 6.0	6.5	7.0	7.5	8.0	8.5	≤ 9.0
3.0	32	38	46	55	67	81	97

¹These CT values achieve greater than a 99.99 percent inactivation of viruses. CT values between the indicated pH values may be determined by linear interpolation. CT values between the indicated temperatures of different tables may be determined by linear interpolation. If no interpolation is used, use the CT_{99.9} value at the lower temperature, and at the higher pH.

TABLE 2.1—CT VALUES (CT $_{99.9}$) FOR 99.9 PERCENT INACTIVATION OF GIARDIA LAMBLIA CYSTS BY CHLORINE DIOXIDE AND OZONE 1

	Temperature					
	< 1 °C	5°C	10 °C	15°C	20 °C	≥ 25 °C
Chlorine dioxide	63 2.9	26 1.9	23 1.4	19 0.95	15 0.72	11 0.48

(1) Determine
$$\frac{CTcalc}{CT_{99,9}}$$
 for each sequence.

(2) Add the
$$\frac{\text{CTcalc}}{\text{CT}_{99.9}}$$
 values together $\left(\sum \frac{\text{(CTcalc)}}{\text{CT}_{99.9}} \right)$

(3) If
$$\Sigma = \left(\frac{\text{CTcalc}}{\text{CT}_{99,9}}\right) \ge 1.0$$
, the 99.9 percent Giardia

lamblia inactivation requirement has been achieved.

(ii) If the system uses more than one point of disinfectant application before or at the first customer, the system must determine the CT value of each disinfection sequence immediately prior to the next point of disinfectant application during peak hourly flow. The $CTcalc/CT_{99.9}$ value of each sequence and

$$\sum \frac{CTcalc}{CT_{99.9}}$$

must be calculated using the method in paragraph (b)(4)(i)(B) of this section to determine if the system is in compliance with §142.72(a).

(iii) Although not required, the total percent inactivation for a system with one or more points of residual disinfectant concentration monitoring may be calculated by solving the following equation:

Percent inactivation =
$$100 ildot \frac{100}{10^z}$$

where z=3×
$$\sum \left(\frac{\text{CTcalc}}{\text{CT}_{99.9}}\right)$$

(5) The residual disinfectant concentration of the water entering the distribution system must be monitored continuously, and the lowest value must be recorded each day, except that if there is a failure in the continuous monitoring equipment, grab sampling

every 4 hours may be conducted in lieu of continuous monitoring, but for no more than 5 working days following the failure of the equipment, and systems serving 3,300 or fewer persons may take grab samples in lieu of providing continuous monitoring on an ongoing basis at the frequencies prescribed below:

System size by population	Samples/ day ¹
<500	1
501 to 1,000	2
1,001 to 2,500	3
2,501 to 3,300	4

¹The day's samples cannot be taken at the same time. The sampling intervals are subject to State review and approval.

If at any time the residual disinfectant concentration falls below 0.2 mg/l in a system using grab sampling in lieu of continuous monitoring, the system must take a grab sample every 4 hours until the residual concentration is equal to or greater than 0.2 mg/l.

(6)(i) The residual disinfectant concentration must be measured at least at the same points in the distribution system and at the same time as total coliforms are sampled, as specified in §141.21, except that the State may allow a public water system which uses both a surface water source or a ground water source under direct influence of surface water, and a ground water source, to take disinfectant residual samples at points other than the total coliform sampling points if the State determines that such points are more representative of treated (disinfected) water quality within the distribution

system. Heterotrophic bacteria, measured as heterotrophic plate count (HPC) as specified in paragraph (a)(3) of this section, may be measured in lieu of residual disinfectant concentration.

- (ii) If the State determines, based on site-specific considerations, that a system has no means for having a sample transported and analyzed for HPC by a certified laboratory under the requisite time and temperature conditions specified by paragraph (a)(3) of this section and that the system is providing adequate disinfection in the distribution system, the requirements of paragraph (b)(6)(i) of this section do not apply to that system.
- (c) Monitoring requirements for systems using filtration treatment. A public water system that uses a surface water source or a ground water source under the influence of surface water and provides filtration treatment must monitor in accordance with this paragraph (c) beginning June 29, 1993, or when filtration is installed, whichever is later.
- (1) Turbidity measurements as required by §141.73 must be performed on representative samples of the system's filtered water every four hours (or more frequently) that the system serves water to the public. A public water system may substitute continuous turbidity monitoring for grab sample monitoring if it validates the continuous measurement for accuracy on a regular basis using a protocol approved by the State. For any systems using slow sand filtration or filtration treatment other than conventional treatment, direct filtration, or diatomaceous earth filtration, the State may reduce the sampling frequency to once per day if it determines that less frequent monitoring is sufficient to indicate effective filtration performance. For systems serving 500 or fewer persons, the State may reduce the turbidity sampling frequency to once per day, regardless of the type of filtration treatment used, if the State determines that less frequent monitoring is sufficient to indicate effective filtration performance.
- (2) The residual disinfectant concentration of the water entering the distribution system must be monitored continuously, and the lowest value must be recorded each day, except that

if there is a failure in the continuous monitoring equipment, grab sampling every 4 hours may be conducted in lieu of continuous monitoring, but for no more than 5 working days following the failure of the equipment, and systems serving 3,300 or fewer persons may take grab samples in lieu of providing continuous monitoring on an ongoing basis at the frequencies each day prescribed below:

System size by population	Samples/ day 1
±500	1
501 to 1,000	2
1,001 to 2,500	3
2,501 to 3,300	4

¹ The day's samples cannot be taken at the same time. The sampling intervals are subject to State review and approval.

If at any time the residual disinfectant concentration falls below 0.2 mg/l in a system using grab sampling in lieu of continuous monitoring, the system must take a grab sample every 4 hours until the residual disinfectant concentration is equal to or greater than 0.2 mg/l.

(3)(i) The residual disinfectant concentration must be measured at least at the same points in the distribution system and at the same time as total coliforms are sampled, as specified in §141.21, except that the State may allow a public water system which uses both a surface water source or a ground water source under direct influence of surface water, and a ground water source to take disinfectant residual samples at points other than the total coliform sampling points if the State determines that such points are more representative of treated (disinfected) water quality within the distribution system. Heterotrophic bacteria, measured as heterotrophic plate count (HPC) as specified in paragraph (a)(3) of this section, may be measured in lieu of residual disinfectant concentration.

(ii) If the State determines, based on site-specific considerations, that a system has no means for having a sample transported and analyzed for HPC by a certified laboratory under the requisite time and temperature conditions specified by paragraph (a)(3) of this section and that the system is providing adequate disinfection in the distribution system, the requirements of paragraph

(c)(3)(i) of this section do not apply to that system.

[54 FR 27527, June 29, 1989, as amended at 59 FR 62470, Dec. 5, 1994; 60 FR 34086, June 29, 1995]

§141.75 Reporting and recordkeeping requirements.

- (a) A public water system that uses a surface water source and does not provide filtration treatment must report monthly to the State the information specified in this paragraph (a) beginning December 31, 1990, unless the State has determined that filtration is required in writing pursuant to section 1412(b)(7)(C)(iii), in which case the State may specify alternative reporting requirements, as appropriate, until filtration is in place. A public water system that uses a ground water source under the direct influence of surface water and does not provide filtration treatment must report monthly to the State the information specified in this paragraph (a) beginning December 31, 1990, or 6 months after the State determines that the ground water source is under the direct influence of surface water, whichever is later, unless the State has determined that filtration is required in writing pursuant \$1412(b)(7)(C)(iii), in which case the State may specify alternative reporting requirements, as appropriate, until filtration is in place.
- (1) Source water quality information must be reported to the State within 10 days after the end of each month the system serves water to the public. Information that must be reported includes:
- (i) The cumulative number of months for which results are reported.
- (ii) The number of fecal and/or total coliform samples, whichever are analyzed during the month (if a system monitors for both, only fecal coliforms must be reported), the dates of sample collection, and the dates when the turbidity level exceeded 1 NTU.
- (iii) The number of samples during the month that had equal to or less than 20/100 ml fecal coliforms and/or equal to or less than 100/100 ml total coliforms, whichever are analyzed.
- (iv) The cumulative number of fecal or total coliform samples, whichever are analyzed, during the previous six

- months the system served water to the public.
- (v) The cumulative number of samples that had equal to or less than 20/100 ml fecal coliforms or equal to or less than 100/100 ml total coliforms, whichever are analyzed, during the previous six months the system served water to the public.
- (vi) The percentage of samples that had equal to or less than 20/100 ml fecal coliforms or equal to or less than 100/100 ml total coliforms, whichever are analyzed, during the previous six months the system served water to the public.
- (vii) The maximum turbidity level measured during the month, the date(s) of occurrence for any measurement(s) which exceeded 5 NTU, and the date(s) the occurrence(s) was reported to the State.
- (viii) For the first 12 months of recordkeeping, the dates and cumulative number of events during which the turbidity exceeded 5 NTU, and after one year of recordkeeping for turbidity measurements, the dates and cumulative number of events during which the turbidity exceeded 5 NTU in the previous 12 months the system served water to the public.
- (ix) For the first 120 months of recordkeeping, the dates and cumulative number of events during which the turbidity exceeded 5 NTU, and after 10 years of recordkeeping for turbidity measurements, the dates and cumulative number of events during which the turbidity exceeded 5 NTU in the previous 120 months the system served water to the public.
- (2) Disinfection information specified in §141.74(b) must be reported to the State within 10 days after the end of each month the system serves water to the public. Information that must be reported includes:
- (i) For each day, the lowest measurement of residual disinfectant concentration in mg/l in water entering the distribution system.
- (ii) The date and duration of each period when the residual disinfectant concentration in water entering the distribution system fell below 0.2 mg/l and when the State was notified of the occurrence.

(iii) The daily residual disinfectant concentration(s) (in mg/l) and disinfectant contact time(s) (in minutes) used for calculating the CT value(s).

(iv) If chlorine is used, the daily measurement(s) of pH of disinfected water following each point of chlorine disinfection.

(v) The daily measurement(s) of water temperature in °C following each point of disinfection.

(vi) The daily CTcalc and CTcalc/CT_{99.9} values for each disinfectant measurement or sequence and the sum of all CTcalc/CT_{99.9} values ((CTcalc/CT_{99.9})) before or at the first customer.

(vii) The daily determination of whether disinfection achieves adequate *Giardia* cyst and virus inactivation, i.e., whether (CTcalc/CT_{99.9}) is at least 1.0 or, where disinfectants other than chlorine are used, other indicator conditions that the State determines are appropriate, are met.

(viii) The following information on the samples taken in the distribution system in conjunction with total coliform monitoring pursuant to §141.72:

(A) Number of instances where the residual disinfectant concentration is measured:

(B) Number of instances where the residual disinfectant concentration is not measured but heterotrophic bacteria plate count (HPC) is measured;

(C) Number of instances where the residual disinfectant concentration is measured but not detected and no HPC is measured;

(D) Number of instances where the residual disinfectant concentration is detected and where HPC is >500/ml;

(E) Number of instances where the residual disinfectant concentration is not measured and HPC is >500/ml;

(F) For the current and previous month the system served water to the public, the value of "V" in the following formula:

$$V = \frac{c + d + e}{a + b} \times 100$$

where

 $a=the\ value\ in\ paragraph\ (a)(2)(viii)(A)\ of\ this\ section,$

b=the value in paragraph (a)(2)(viii)(B) of this section,

c=the value in paragraph (a)(2)(viii)(C) of this section,

d=the value in paragraph (a)(2)(viii)(D) of this section, and

e=the value in paragraph (a)(2)(viii)(E) of this section.

(G) If the State determines, based on site-specific considerations, that a system has no means for having a sample transported and analyzed for HPC by a certified laboratory under the requisite time and temperature conditions specified by §141.74(a)(3) and that the system is providing adequate disinfection in the distribution system, the requirements of paragraph (a)(2)(viii)(A)–(F) of this section do not apply to that system.

(ix) A system need not report the data listed in paragraphs (a)(2)(i), and (iii)-(vi) of this section if all data listed in paragraphs (a)(2) (i)-(viii) of this section remain on file at the system, and the State determines that:

(A) The system has submitted to the State all the information required by paragraphs (a)(2) (i)-(viii) of this sec-

later than the end of the next business day.

- (iii) If at any time the residual falls below 0.2 mg/l in the water entering the distribution system, the system must notify the State as soon as possible, but no later than by the end of the next business day. The system also must notify the State by the end of the next business day whether or not the residual was restored to at least 0.2 mg/l within 4 hours.
- (b) A public water system that uses a surface water source or a ground water source under the direct influence of surface water and provides filtration treatment must report monthly to the State the information specified in this paragraph (b) beginning June 29, 1993, or when filtration is installed, whichever is later.
- (1) Turbidity measurements as required by \$141.74(c)(1) must be reported within 10 days after the end of each month the system serves water to the public. Information that must be reported includes:
- (i) The total number of filtered water turbidity measurements taken during the month.
- (ii) The number and percentage of filtered water turbidity measurements taken during the month which are less than or equal to the turbidity limits specified in §141.73 for the filtration technology being used.
- (iii) The date and value of any turbidity measurements taken during the month which exceed 5 NTU.
- (2) Disinfection information specified in §141.74(c) must be reported to the State within 10 days after the end of each month the system serves water to the public. Information that must be reported includes:
- (i) For each day, the lowest measurement of residual disinfectant concentration in mg/l in water entering the distribution system.

system has occurred, must report that occurrence to the State as soon as possible, but no later than by the end of the next business day.

- (ii) If at any time the turbidity exceeds 5 NTU, the system must inform the State as soon as possible, but no later than the end of the next business day.
- (iii) If at any time the residual falls below 0.2 mg/l in the water entering the distribution system, the system must notify the State as soon as possible, but no later than by the end of the next business day. The system also must notify the State by the end of the next business day whether or not the residual was restored to at least 0.2 mg/l within 4 hours.

Subpart I—Control of Lead and Copper

Source: 56 FR 26548, June 7, 1991, unless otherwise noted.

§141.80 General requirements.

- (a) Applicability and effective dates. (1) The requirements of this subpart I constitute the national primary drinking water regulations for lead and copper. Unless otherwise indicated, each of the provisions of this subpart applies to community water systems and nontransient, non-community water systems (hereinafter referred to as "water systems" or "systems").
- (2) The requirements set forth in §§141.86 to 141.91 shall take effect on July 7, 1991. The requirements set forth in §§141.80 to 141.85 shall take effect on December 7, 1992.
- (b) Scope. These regulations establish a treatment technique that includes requirements for corrosion control treatment, source water treatment, lead service line replacement, and public education. These requirements are triggered, in some cases, by lead and copper action levels measured in samples collected at consumers' taps.
- (c) Lead and copper action levels. (1) The lead action level is exceeded if the concentration of lead in more than 10 percent of tap water samples collected during any monitoring period conducted in accordance with §141.86 is greater than 0.015 mg/L (i.e., if the

"90th percentile" lead level is greater than 0.015 mg/L).

- (2) The copper action level is exceeded if the concentration of copper in more than 10 percent of tap water samples collected during any monitoring period conducted in accordance with \$141.86 is greater than 1.3 mg/L (i.e., if the "90th percentile" copper level is greater than 1.3 mg/L).
- (3) The 90th percentile lead and copper levels shall be computed as follows:
- (i) The results of all lead or copper samples taken during a monitoring period shall be placed in ascending order from the sample with the lowest concentration to the sample with the highest concentration. Each sampling result shall be assigned a number, ascending by single integers beginning with the number 1 for the sample with the lowest contaminant level. The number assigned to the sample with the highest contaminant level shall be equal to the total number of samples taken.
- (ii) The number of samples taken during the monitoring period shall be multiplied by 0.9.
- (iii) The contaminant concentration in the numbered sample yielded by the calculation in paragraph (c)(3)(ii) is the 90th percentile contaminant level.
- (iv) For water systems serving fewer than 100 people that collect 5 samples per monitoring period, the 90th percentile is computed by taking the average of the highest and second highest concentrations.
- (d) Corrosion control treatment requirements. (1) All water systems shall install and operate optimal corrosion control treatment as defined in §141.2.
- (2) Any water system that complies with the applicable corrosion control treatment requirements specified by the State under §§ 141.81 and 141.82 shall be deemed in compliance with the treatment requirement contained in paragraph (d)(1) of this section.
- (e) Source water treatment requirements. Any system exceeding the lead or copper action level shall implement all applicable source water treatment requirements specified by the State under §141.83.
- (f) Lead service line replacement requirements. Any system exceeding the lead action level after implementation

Environmental Protection Agency

§ 141.81

of applicable corrosion control and source water treatment requirements shall complete the lead service line replacement requirements contained in § 141.84.

(g) Public education requirements. Any system exceeding the lead action level shall implement the public education requirements contained in §141.85. (h)

tap water lead level computed under \$141.80(c)(3), and the highest source water lead concentration, is less than the Practical Quantitation Level for lead specified in \$141.89(a)(1)(ii).

- (c) Any small or medium-size water system that is required to complete the corrosion control steps due to its exceedance of the lead or copper action level may cease completing the treatment steps whenever the system meets both action levels during each of two consecutive monitoring periods conducted pursuant to §141.86 and submits the results to the State. If any such water system thereafter exceeds the lead or copper action level during any monitoring period, the system (or the State, as the case may be) shall recommence completion of the applicable treatment steps, beginning with the first treatment step which was not previously completed in its entirety. The State may require a system to repeat treatment steps previously completed by the system where the State determines that this is necessary to implement properly the treatment requirements of this section. The State shall notify the system in writing of such a determination and explain the basis for its decision. The requirement for any small- or medium-size system to implement corrosion control treatment steps in accordance with paragraph (e) of this section (including systems deemed to have optimized corrosion control under paragraph (b)(1) of this section) is triggered whenever any small- or medium-size system exceeds the lead or copper action level.
- (d) Treatment steps and deadlines for large systems. Except as provided in paragraph (b) (2) and (3) of this section, large systems shall complete the following corrosion control treatment steps (described in the referenced portions of §§141.82, 141.86, and 141.87) by the indicated dates.
- (1) Step 1: The system shall conduct initial monitoring (§141.86(d)(1) and §141.87(b)) during two consecutive sixmonth monitoring periods by January 1, 1993.
- (2) Step 2: The system shall complete corrosion control studies (§141.82(c)) by July 1, 1994.

- (3) Step 3: The State shall designate optimal corrosion control treatment (§141.82(d)) by January 1, 1995.
- (4) *Step 4:* The system shall install optimal corrosion control treatment (§141.82(e)) by January 1, 1997.
- (5) Step 5: The system shall complete follow-up sampling (§141.86(d)(2) and §141.87(c)) by January 1, 1998.
- (6) Step 6: The State shall review installation of treatment and designate optimal water quality control parameters (§141.82(f)) by July 1, 1998.
- (7) Step 7: The system shall operate in compliance with the State-specified optimal water quality control parameters (§141.82(g)) and continue to conduct tap sampling (§141.86(d)(3) and §141.87(d)).
- (e) Treatment Steps and deadlines for small and medium-size systems. Except as provided in paragraph (b) of this section, small and medium-size systems shall complete the following corrosion control treatment steps (described in the referenced portions of §§141.82, 141.86 and 141.87) by the indicated time periods.
- (1) Step 1: The system shall conduct initial tap sampling (§141.86(d)(1) and §141.87(b)) until the system either exceeds the lead or copper action level or becomes eligible for reduced monitoring under §141.86(d)(4). A system exceeding the lead or copper action level shall recommend optimal corrosion control treatment (§141.82(a)) within six months after it exceeds one of the action levels.
- (2) Step 2: Within 12 months after a system exceeds the lead or copper action level, the Stncedm touar

(4) Step 4: If the system has performed corrosion control studies under step 2, the State shall designate optimal corrosion control treatment (§141.82(d)) within 6 months after completion of step 3.

(5) Step 5: The system shall install optimal corrosion control treatment (§141.82(e)) within 24 months after the State designates such treatment.

(6) Step 6: The system shall complete follow-up sampling (§141.86(d)(2) and §141.87(c)) within 36 months after the State designates optimal corrosion control treatment.

(7) Step 7: The State shall review the system's installation of treatment and designate optimal water quality control parameters (§141.82(f)) within 6 months after completion of step 6.

(8) Step 8: The system shall operate in compliance with the State-designated optimal water quality control parameters (§141.82(g)) and continue to conduct tap sampling (§141.86(d)(3) and §141.87(d)).

[56 FR 26548, June 7, 1991, as amended at 59 FR 33862, June 30, 1994]

§141.82 Description of corrosion control treatment requirements.

Each system shall complete the corrosion control treatment requirements described below which are applicable to such system under §141.81.

(a) System recommendation regarding corrosion control treatment. Based upon the results of lead and copper tap monitoring and water quality parameter monitoring, small and medium-size water systems exceeding the lead or copper action level shall recommend installation of one or more of the corrosion control treatments listed in paragraph (c)(1) of this section which the system believes constitutes optimal corrosion control for that system. The State may require the system to conduct additional water quality parameter monitoring in accordance with §141.87(b) to assist the State in reviewing the system's recommendation.

(b) State decision to require studies of corrosion control treatment (applicable to small and medium-size systems). The State may require any small or medium-size system that exceeds the lead or copper action level to perform corrosion control studies under paragraph

(c) of this section to identify optimal corrosion control treatment for the system.

- (c) Performance of corrosion control studies. (1) Any public water system performing corrosion control studies shall evaluate the effectiveness of each of the following treatments, and, if appropriate, combinations of the following treatments to identify the optimal corrosion control treatment for that system:
 - (i) Alkalinity and pH adjustment;
- (ii) Calcium hardness adjustment; and
- (iii) The addition of a phosphate or silicate based corrosion inhibitor at a concentration sufficient to maintain an effective residual concentration in all test tap samples.
- (2) The water system shall evaluate each of the corrosion control treatments using either pipe rig/loop tests, metal coupon tests, partial-system tests, or analyses based on documented analogous treatments with other systems of similar size, water chemistry and distribution system configuration.
- (3) The water system shall measure the following water quality parameters in any tests conducted under this paragraph before and after evaluating the corrosion control treatments listed above:
 - (i) Lead;
 - (ii) Copper;
 - (iii) pH;
 - (iv) Alkalinity;
 - (v) Calcium;
 - (vi) Conductivity;
- (vii) Orthophosphate (when an inhibitor containing a phosphate compound is used);
- (viii) Silicate (when an inhibitor containing a silicate compound is used);
 - (ix) Water temperature.
- (4) The water system shall identify all chemical or physical constraints that limit or prohibit the use of a particular corrosion control treatment

- (ii) Data and documentation demonstrating that the water system has previously attempted to evaluate a particular corrosion control treatment and has found that the treatment is ineffective or adversely affects other water quality treatment processes.
- (5) The water system shall evaluate the effect of the chemicals used for corrosion control treatment on other water quality treatment processes.
- (6) On the basis of an analysis of the data generated during each evaluation, the water system shall recommend to the State in writing the treatment option that the corrosion control studies indicate constitutes optimal corrosion control treatment for that system. The water system shall provide a rationale for its recommendation along with all supporting documentation specified in paragraphs (c)(1) through (5) of this section.
- (d) State designation of optimal corrosion control treatment. (1) Based upon consideration of available information including, where applicable, studies performed under paragraph (c) of this section and a system's recommended

Environmental Protection Agency

minimum values or within ranges designated by the State under paragraph (f) of this section in each sample collected under §141.87(d). If the water quality parameter value of any sample is below the minimum value or outside the range designated by the State, then the system is out of compliance with paragraph. As specified in §141.87(d), the system may take a confirmation sample for any water quality parameter value no later than 3 days after the first sample. If a confirmation sample is taken, the result must be averaged with the first sampling result and the average must be used for any compliance determinations under this paragraph. States have discretion to delete results of obvious sampling errors from this calculation.

(h) Modification of State treatment decisions. Upon its own initiative or in response to a request by a water system or other interested party, a State may modify its determination of the optimal corrosion control treatment under paragraph (d) of this section or optimal water quality control parameters under paragraph (f) of this section. A request for modification by a system or other interested party shall be in writing, explain why the modification is appropriate, and provide supporting documentation. The State may modify its determination where it concludes that such change is necessary to ensure that the system continues to optimize corrosion control treatment. A revised determination shall be made in writing, set forth the new treatment re-

listed in paragraph (b)(2) of this section. A system may recommend that no treatment be installed based upon a demonstration that source water treatment is not necessary to minimize lead and copper levels at users' taps.

- (2) State determination regarding source water treatment. The State shall complete an evaluation of the results of all source water samples submitted by the water system to determine whether source water treatment is necessary to minimize lead or copper levels in water delivered to users' taps. If the State determines that treatment is needed, the State shall either require installation and operation of the source water treatment recommended by the system (if any) or require the installation and operation of another source water treatment from among the following: Ion exchange, reverse osmosis, lime softening or coagulation/filtration. If the State requests additional information to aid in its review, the water system shall provide the information by the date specified by the State in its request. The State shall notify the system in writing of its determination and set forth the basis for its decision.
- (3) Installation of source water treatment. Each system shall properly install and operate the source water treatment designated by the State under paragraph (b)(2) of this section.
- (4) State review of source water treatment and specification of maximum permissible source water levels. The State shall review the source water samples taken by the water system both before and after the system installs source water treatment, and determine whether the system has properly installed and operated the source water treatment designated by the State. Based upon its review, the State shall designate the maximum permissible lead and copper concentrations for finished water entering the distribution system. Such levels shall reflect the contaminant removal capability of the treatment properly operated and maintained. The State shall notify the system in writing and explain the basis for
- (5) Continued operation and maintenance. Each water system shall maintain lead and copper levels below the maximum permissible concentrations

designated by the State at each sampling point monitored in accordance with §141.88. The system is out of compliance with this paragraph if the level of lead or copper at any sampling point is greater than the maximum permissible concentration designated by the State.

- (6) Modification of State treatment decisions. Upon its own initiative or in response to a request by a water system or other interested party, a State may modify its determination of the source water treatment under paragraph (b)(2) of this section, or maximum permissible lead and copper concentrations for finished water entering the distribution system under paragraph (b)(4) of this section. A request for modification by a system or other interested party shall be in writing, explain why the modification is appropriate, and provide supporting documentation. The State may modify its determination where it concludes that such change is necessary to ensure that the system continues to minimize lead and copper concentrations in source water. A revised determination shall be made in writing, set forth the new treatment requirements, explain the basis for the State's decision, and provide an implementation schedule for completing the treatment modifications.
- (7) Treatment decisions by EPA in lieu of the State. Pursuant to the procedures in §142.19, the EPA Regional Administrator may review treatment determinations made by a State under paragraphs (b) (2), (4), or (6) of this section and issue Federal treatment determinations consistent with the requirements of those paragraphs where the Administrator finds that:
- (i) A State has failed to issue a treatment determination by the applicable deadlines contained in §141.83(a),
- (ii) A state has abused its discretion in a substantial number of cases or in cases affecting a substantial population, or
- (iii) The technical aspects of a State's determination would be indefensible in an expected Federal enforcement action taken against a system.

§141.84 Lead service line replacement requirements.

(a) Systems that fail to meet the lead action level in tap samples taken pursuant to §141.86(d)(2), after installing corrosion control and/or source water treatment (whichever sampling occurs later), shall replace lead service lines in accordance with the requirements of this section. If a system is in violation of §141.81 or §141.83 for failure to install source water or corrosion control treatment, the State may require the system to commence lead service line replacement under this section after the date by which the system was required to conduct monitoring under §141.86(d)(2) has passed.

(b) A system shall replace annually at least 7 percent of the initial number of lead service lines in its distribution system. The initial number of lead service lines is the number of lead lines in place at the time the replacement program begins. The system shall identify the initial number of lead service lines in its distribution system based upon a materials evaluation, including evaluation reauired under §141.86(a). The first year of lead service line replacement shall begin on the date the action level was exceeded in tap sampling referenced in paragraph (a) of this section.

(c) A system is not required to replace an individual lead service line if the lead concentration in all service line samples from that line, taken pursuant to §141.86(b)(3), is less than or equal to 0.015 mg/L.

(d) A water system shall replace the entire service line (up to the building inlet) unless it demonstrates to the satisfaction of the State under paragraph (e) of this section that it controls less than the entire service line. In such cases, the system shall replace the portion of the line which the State determines is under the system's control. The system shall notify the user served by the line that the system will replace the portion of the service line under its control and shall offer to replace the building owner's portion of the line, but is not required to bear the cost of replacing the building owner's portion of the line. For buildings where only a portion of the lead service line is replaced, the water system shall inform the resident(s) that the system will collect a first flush tap water sample after partial replacement of the service line is completed if the resident(s) so desire. In cases where the resident(s) accept the offer, the system shall collect the sample and report the results to the resident(s) within 14 days following partial lead service line replacement.

(e) A water system is presumed to control the entire lead service line (up to the building inlet) unless the system demonstrates to the satisfaction of the State, in a letter submitted under §141.90(e)(4), that it does not have any of the following forms of control over the entire line (as defined by state statutes, municipal ordinances, public service contracts or other applicable legal authority): authority to set standards for construction, repair, or maintenance of the line, authority to replace, repair, or maintain the service line, or ownership of the service line. The State shall review the information supplied by the system and determine whether the system controls less than the entire service line and, in such cases, shall determine the extent of the system's control. The State's determination shall be in writing and explain the basis for its decision.

(f) The State shall require a system to replace lead service lines on a shorter schedule than that required by this section, taking into account the number of lead service lines in the system, where such a shorter replacement schedule is feasible. The State shall make this determination in writing and notify the system of its finding within 6 months after the system is triggered into lead service line replacement based on monitoring referenced in paragraph (a) of this section.

(g) Any system may cease replacing lead service lines whenever first draw samples collected pursuant to §141.86(b)(2) meet the lead action level during each of two consecutive monitoring periods and the system submits the results to the State. If first draw tap samples collected in any such system thereafter exceeds the lead action level, the system shall recommence replacing lead service lines pursuant to paragraph (b) of this section.

40 CFR Ch. I (7-1-96 Edition)

§ 141.85

(h) To demonstrate compliance with paragraphs (a) through (d) of this sec-

school, can contain fairly high levels of lead.

(4) Steps you can take in the home to reduce exposure to lead in drinking water. (i) Despite our best efforts mentioned earlier to control water corrosivity and remove lead from the water supply, lead levels in some homes or buildings can be high. To find out whether you need to take action in your own home, have your drinking water tested to determine if it contains excessive concentrations of lead. Testing the water is essential because you cannot see, taste, or smell lead in drinking water. Some local laboratories that can provide this service are listed at the end of this booklet. For more information on having your water tested, please call [insert phone number of water system].

(ii) If a water test indicates that the drinking water drawn from a tap in your home contains lead above 15 ppb, then you should take the following precautions:

(A) Let the water run from the tap before using it for drinking or cooking any time the water in a faucet has gone unused for more than six hours. The longer water resides in your home's plumbing the more lead it may contain. Flushing the tap means running the cold water faucet until the water gets noticeably colder, usually about 15-30 seconds. If your house has a lead service line to the water main, you may have to flush the water for a longer time, perhaps one minute, before drinking. Although toilet flushing or showering flushes water through a portion of your home's plumbing system, you still need to flush the water in each faucet before using it for drinking or cooking. Flushing tap water is a simple and inexpensive measure you can take to protect your family's health. It usually uses less than one or two gallons of water and costs less than [insert a cost estimate based on flushing two times a day for 30 days] per month. To conserve water, fill a couple of bottles for drinking water after flushing the tap, and whenever possible use the first flush water to wash the dishes or water the plants. If you live in a high-rise building, letting the water flow before using it may not work to lessen your risk from lead. The plumbing systems have more, and

sometimes larger pipes than smaller buildings. Ask your landlord for help in locating the source of the lead and for advice on reducing the lead level.

(B) Try not to cook with, or drink water from the hot water tap. Hot water can dissolve more lead more quickly than cold water. If you need hot water, draw water from the cold tap and heat it on the stove.

(C) Remove loose lead solder and debris from the plumbing materials installed in newly constructed homes, or homes in which the plumbing has recently been replaced, by removing the faucet strainers from all taps and running the water from 3 to 5 minutes. Thereafter, periodically remove the strainers and flush out any debris that has accumulated over time.

(D) If your copper pipes are joined with lead solder that has been installed illegally since it was banned in 1986, notify the plumber who did the work and request that he or she replace the lead solder with lead-free solder. Lead solder looks dull gray, and when scratched with a key looks shiny. In addition, notify your State [insert name of department responsible for enforcing the Safe Drinking Water Act in your State] about the violation.

(E) Determine whether or not the service line that connects your home or apartment to the water main is made of lead. The best way to determine if your service line is made of lead is by either hiring a licensed plumber to inspect the line or by contacting the plumbing contractor who installed the line. You can identify the plumbing contractor by checking the city's record of building permits which should be maintained in the files of the linsert name of department that issues building permits]. A licensed plumber can at the same time check to see if

is only partially controlled by the [insert name of the city, county, or water system that controls the line], we are required to provide you with information on how to replace your portion of the service line, and offer to replace that portion of the line at your expense and take a follow-up tap water sample within 14 days of the replacement. Acceptable replacement alternatives include copper, steel, iron, and plastic pipes.

(F) Have an electrician check your

- (2) A community water system that fails to meet the lead action level on the basis of tap water samples collected in accordance with §141.86 shall, within 60 days:
- (i) Insert notices in each customer's water utility bill containing the information in paragraph (a) of this section, along with the following alert on the water bill itself in large print: "SOME HOMES IN THIS COMMUNITY HAVE ELEVATED LEAD LEVELS IN THEIR DRINKING WATER. LEAD CAN POSE A SIGNIFICANT RISK TO YOUR HEALTH. PLEASE READ THE ENCLOSED NOTICE FOR FURTHER INFORMATION."
- (ii) Submit the information in paragraph (a) of this section to the editorial departments of the major daily and weekly newspapers circulated throughout the community.
- (iii) Deliver pamphlets and/or brochures that contain the public education materials in paragraphs (a) (2) and (4) of this section to facilities and organizations, including the following:
- (A) Public schools and/or local school boards;
- (B) City or county health department;
- (C) Women, Infants, and Children and/or Head Start Program(s) whenever available;
- (D) Public and private hospitals and/ or clinics;
 - (E) Pediatricians;
 - (F) Family planning clinics; and
 - (G) Local welfare agencies.
- (iv) Submit the public service announcement in paragraph (b) of this section to at least five of the radio and television stations with the largest audiences that broadcast to the community served by the water system.
- (3) A community water system shall repeat the tasks contained in paragraphs (c)(2) (i), (ii) and (iii) of this section every 12 months, and the tasks contained in paragraphs (c)(2)(iv) of this section every 6 months for as long as the system exceeds the lead action level
- (4) Within 60 days after it exceeds the lead action level, a non-transient non-community water system shall deliver the public education materials contained in paragraphs (a) (1), (2), and (4) of this section as follows:

- (i) Post informational posters on lead in drinking water in a public place or common area in each of the buildings served by the system; and
- (ii) Distribute informational pamphlets and/or brochures on lead in

of-entry treatment devices designed to remove inorganic contaminants.

- (2) A water system shall use the information on lead, copper, and galvanized steel that it is required to collect under §141.42(d) of this part [special monitoring for corrosivity characteristics] when conducting a materials evaluation. When an evaluation of the incollected pursuant formation §141.42(d) is insufficient to locate the requisite number of lead and copper sampling sites that meet the targeting criteria in paragraph (a) of this section, the water system shall review the sources of information listed below in order to identify a sufficient number of sampling sites. In addition, the system shall seek to collect such information where possible in the course of its normal operations (e.g., checking service line materials when reading water meters or performing maintenance activities):
- (i) All plumbing codes, permits, and records in the files of the building department(s) which indicate the plumbing materials that are installed within publicly and privately owned structures connected to the distribution system:
- (ii) All inspections and records of the distribution system that indicate the material composition of the service connections that connect a structure to the distribution system; and
- (iii) All existing water quality information, which includes the results of all prior analyses of the system or individual structures connected to the system, indicating locations that may be particularly susceptible to high lead or copper concentrations.
- (3) The sampling sites selected for a community water system's sampling pool ("tier I sampling sites") shall consist of single family structures that:
- (i) Contain copper pipes with lead solder installed after 1982 or contain lead pipes; and/or
- (ii) Are served by a lead service line. When multiple-family residences comprise at least 20 percent of the structures served by a water system, the system may include these types of structures in its sampling pool.
- (4) Any community water system with insufficient tier 1 sampling sites shall complete its sampling pool with

"tier 2 sampling sites", consisting of buildings, including multiple-family from all of the sites identified as being served by such lines.

- (b) Sample collection methods. (1) All tap samples for lead and copper collected in accordance with this subpart, with the exception of lead service line samples collected under §141.84(c), shall be first draw samples.
- (2) Each first draw tap sample for lead and copper shall be one liter in volume and have stood motionless in the plumbing system of each sampling site for at least six hours. First draw samples from residential housing shall be collected from the cold water kitchen tap or bathroom sink tap. Firstdraw samples from a nonresidential building shall be collected at an interior tap from which water is typically drawn for consumption. First draw samples may be collected by the system or the system may allow residents to collect first draw samples after instructing the residents of the sampling procedures specified in this paragraph. To avoid problems of residents handling nitric acid, acidification of first draw samples may be done up to 14 days after the sample is collected. If the sample is not acidified immediately after collection, then the sample must stand in the original container for at least 28 hours after acidification. If a system allows residents to perform sampling, the system may not challenge, based on alleged errors in sample collection, the accuracy of sampling results.
- (3) Each service line sample shall be one liter in volume and have stood motionless in the lead service line for at least six hours. Lead service line samples shall be collected in one of the following three ways:
- (i) At the tap after flushing the volume of water between the tap and the lead service line. The volume of water shall be calculated based on the interior diameter and length of the pipe between the tap and the lead service line;
- (ii) Tapping directly into the lead service line; or
- (iii) If the sampling site is a building constructed as a single-family residence, allowing the water to run until there is a significant change in temperature which would be indicative of water that has been standing in the lead service line.

- (4) A water system shall collect each first draw tap sample from the same sampling site from which it collected a previous sample. If, for any reason, the water system cannot gain entry to a sampling site in order to collect a follow-up tap sample, the system may collect the follow-up tap sample from another sampling site in its sampling pool as long as the new site meets the same targeting criteria, and is within reasonable proximity of the original site.
- (c) Number of samples. Water systems shall collect at least one sample during each monitoring period specified in paragraph (d) of this section from the number of sites listed in the first column below ("standard monitoring"). A system conducting reduced monitoring under paragraph (d)(4) of this section may collect one sample from the number of sites specified in the second column below during each monitoring period specified in paragraph (d)(4) of this section.

System size (No. people served)	No. of sites (standard monitoring)	No. of sites (reduced mon-itoring)
---------------------------------	--	------------------------------------

>100,000

continue monitoring in accordance with paragraph (d)(2) of this section, or

(B) The system meets the lead and copper action levels during two consecutive six-month monitoring periods, in which case the system may reduce monitoring in accordance with paragraph (d)(4) of this section.

(2) Monitoring after installation of corrosion control and source water treatment. (i) Any large system which installs optimal corrosion control treatment pursuant to \$141.81(d)(4) shall monitor during two consecutive sixmonth monitoring periods by the date specified in \$141.81(d)(5).

(ii) Any small or medium-size system which installs optimal corrosion control treatment pursuant to §141.81(e)(5) shall monitor during two consecutive six-month monitoring periods by the date specified in §141.81(e)(6).

(iii) Any system which installs source water treatment pursuant to §141.83(a)(3) shall monitor during two consecutive six-month monitoring periods by the date specified in §141.83(a)(4).

(3) Monitoring after State specifies water quality parameter values for optimal corrosion control. After the State specifies the values for water quality control parameters under §141.82(f), the system shall monitor during each subsequent six-month monitoring period to begin on the date the State specifies the optimal values under §141.82(f).

(4) Reduced monitoring. (i) A small or medium-size water system that meets the lead and copper action levels during each of two consecutive six-month monitoring periods may reduce the number of samples in accordance with paragraph (c) of this section, and reduce the frequency of sampling to once per year.

(ii) Any water system that maintains the range of values for the water quality control parameters reflecting optimal corrosion control treatment specified by the State under §141.82(f) during each of two consecutive six-month monitoring periods may request that the State allow the system to reduce the frequency of monitoring to once per year and to reduce the number of lead and copper samples in accordance with paragraph (c) of this section. The

State shall review the information submitted by the water system and shall make its decision in writing, setting forth the basis for its determination. The State shall review, and where appropriate, revise its determination when the system submits new monitoring or treatment data, or when other data relevant to the number and frequency of tap sampling becomes available.

(iii) A small or medium-size water system that meets the lead and copper action levels during three consecutive years of monitoring may reduce the frequency of monitoring for lead and copper from annually to once every three years. Any water system that maintains the range of values for the water quality control parameters reflecting optimal corrosion control treatment specified by the State under §141.82(f) during three consecutive years of monitoring may request that the State allow the system to reduce the frequency of monitoring from annually to once every three years. The State shall review the information submitted by the water system and shall make its decision in writing, setting forth the basis for its determination. The State shall review, and where appropriate, revise its determination when the system submits new monitoring or treatment data, or when other data relevant to the number and frequency of tap sampling becomes available.

(iv) A water system that reduces the number and frequency of sampling shall collect these samples from sites included in the pool of targeted sampling sites identified in paragraph (a) of this section. Systems sampling annually or less frequently shall conduct the lead and copper tap sampling during the months of June, July, August or September.

(v) A small- or medium-size water system subject to reduced monitoring that exceeds the lead or copper action level shall resume sampling in accordance with paragraph (d)(3) of this section and collect the number of samples specified for standard monitoring under paragraph (d) of this section. Such system shall also conduct water quality parameter monitoring in accordance with §141.87 (b), (c) or (d) (as

appropriate) during the monitoring period in which it exceeded the action level. Any water system subject to the reduced monitoring frequency that fails to operate within the range of values for the water quality parameters specified by the State under §141.82(f) shall resume tap water sampling in accordance with paragraph (d)(3) of this section and collect the number of samples specified for standard monitoring under paragraph (c) of this section.

(e) Additional monitoring by systems. The results of any monitoring conducted in addition to the minimum requirements of this section shall be considered by the system and the State in making any determinations (i.e., calculating the 90th percentile lead or copper level) under this subpart.

[56 FR 26548, June 7, 1991; 56 FR 32113, July 15, 1991; 57 FR 28788, June 29, 1992]

§141.87 Monitoring requirements for water quality parameters.

All large water systems, and all small- and medium-size systems that exceed the lead or copper action level shall monitor water quality parameters in addition to lead and copper in accordance with this section. The requirements of this section are summarized in the table at the end of this section.

(a) General requirements—(1) Sample collection methods. (i) Tap samples shall be representative of water quality throughout the distribution system taking into account the number of persons served, the different sources of water, the different treatment methods employed by the system, and seasonal variability. Tap sampling under this section is not required to be conducted at taps targeted for lead and copper sampling under §141.86(a). [Note: Systems may find it convenient to conduct tap sampling for water quality parameters at sites used for coliform sampling under 40 CFR 141.21.]

(ii) Samples collected at the entry point(s) to the distribution system shall be from locations representative of each source after treatment. If a system draws water from more than one source and the sources are combined before distribution, the system must sample at an entry point to the distribution system during periods of nor-

mal operating conditions (i.e., when water is representative of all sources being used).

(2) Number of samples. (i) Systems shall collect two tap samples for applicable water quality parameters during each monitoring period specified under paragraphs (b) through (e) of this sec-

- (c) Monitoring after installation of corrosion control. Any large system which installs optimal corrosion control treatment pursuant to \$141.81(d)(4) shall measure the water quality parameters at the locations and frequencies specified below during each six-month monitoring period specified in \$141.86(d)(2)(i). Any small or medium-size system which installs optimal corrosion control treatment shall conduct such monitoring during each six-month monitoring period specified in \$141.86(d)(2)(ii) in which the system exceeds the lead or copper action level.
 - (1) At taps, two samples for:
 - (i) pH;
 - (ii) Alkalinity;
- (iii) Orthophosphate, when an inhibitor containing a phosphate compound is used;
- (iv) Silica, when an inhibitor containing a silicate compound is used;
 - (v) Calcium, when calcium carbonate

Environmental Protection Agency

§ 141.88

samples evenly throughout the year so as to reflect seasonal variability.

(4) Any water system subject to the reduced monitoring frequency that fails to operate within the range of values for the water quality parameters specified by the State in §141.82(f) shall resume tap water sampling in accordance with the number and frequency requirements in paragraph (d) of this section.

(f) Additional monitoring by systems. The results of any monitoring conducted in addition to the minimum requirements of this section shall be considered by the system and the State in making any determinations (i.e., determining concentrations of water quality parameters) under this section or §141.82.

SUMMARY OF MONITORING REQUIREMENTS FOR WATER QUALITY PARAMETERS ¹

Monitoring Period	Parameters ²	Location	Frequency

the initial sample was taken (but not to exceed two weeks) at the same sampling point. If a State-required confirmation sample is taken for lead or copper, then the results of the initial and confirmation sample shall be averaged in determining compliance with the State-specified maximum permissible levels. Any sample value below the detection limit shall be considered to be zero. Any value above the detection limit but below the PQL shall either be considered as the measured value or be considered one-half the PQL.

- (b) Monitoring frequency after system exceeds tap water action level. Any system which exceeds the lead or copper action level at the tap shall collect one source water sample from each entry point to the distribution system within six months after the exceedance.
- (c) Monitoring frequency after installation of source water treatment. Any system which installs source water treatment pursuant to §141.83(a)(3) shall collect an additional source water sample from each entry point to the distribution system during two consecutive six-month monitoring periods by the deadline specified in §141.83(a)(4).
- (d) Monitoring frequency after State specifies maximum permissible source water levels or determines that source water treatment is not needed. (1) A system shall monitor at the frequency specified below in cases where the State specifies maximum permissible source water levels under §141.83(b)(4) or determines that the system is not required to install source water treatment under §141.83(b)(2).
- (i) A water system using only groundwater shall collect samples once during the three-year compliance period (as that term is defined in §141.2) in effect when the applicable State determination under paragraph (d)(1) of this section is made. Such systems shall collect samples once during each subsequent compliance period.
- (ii) A water system using surface water (or a combination of surface and groundwater) shall collect samples once during each year, the first annual monitoring period to begin on the date on which the applicable State determination is made under paragraph (d)(1) of this section.

- (2) A system is not required to conduct source water sampling for lead and/or copper if the system meets the action level for the specific contaminant in tap water samples during the entire source water sampling period applicable to the system under paragraph (d)(1) (i) or (ii) of this section.
- (e) Reduced monitoring frequency. (1) A water system using only groundwater which demonstrates that finished drinking water entering the distribution system has been maintained below the maximum permissible lead and/or copper concentrations specified by the State in §141.83(b)(4) during at least three consecutive compliance periods under paragraph (d)(1) of this section may reduce the monitoring frequency for lead and/or copper to once during each nine-year compliance cycle (as that term is defined in §141.2).
- (2) A water system using surface water (or a combination of surface and ground waters) which demonstrates that finished drinking water entering the distribution system has been maintained below the maximum permissible lead and copper concentrations specified by the State in §141.83(b)(4) for at least three consecutive years may reduce the monitoring frequency in paragraph (d)(1) of this section to once during each nine-year compliance cycle (as that term is defined in §141.2).
- (3) A water system that uses a new source of water is not eligible for reduced monitoring for lead and/or copper until concentrations in samples collected from the new source during three consecutive monitoring periods are below the maximum permissible lead and copper concentrations specified by the State in §141.83(a)(5).

[56 FR 26548, June 7, 1991; 57 FR 28788 and 28789, June 29, 1992]

§141.89 Analytical methods.

- (a) Analyses for lead, copper, pH, conductivity, calcium, alkalinity, orthophosphate, silica, and temperature shall be conducted with the methods in $\S 141.23(k)(1)$.
- (1) Analyses under this section shall only be conducted by laboratories that have been certified by EPA or the State. To obtain certification to conduct analyses for lead and copper, laboratories must:

- (i) Analyze performance evaluation samples which include lead and copper provided by EPA Environmental Monitoring and Support Laboratory or equivalent samples provided by the State; and
- (ii) Achieve quantitative acceptance limits as follows:
- (A) For lead: ±30 percent of the actual amount in the Performance Evaluation sample when the actual amount is greater than or equal to 0.005 mg/L. The Practical Quantitation Level, or PQL for lead is 0.005 mg/L.
- (B) For Copper: ±10 percent of the actual amount in the Performance Evaluation sample when the actual amount is greater than or equal to 0.050 mg/L. The Practical Quantitation Level, or PQL for copper is 0.050 mg/L;
- (iii) Achieve method detection limits according to the procedures in appendix B of part 136 of this title as follows:
- (A) Lead: 0.001 mg/L (only if source water compositing is done under §141.23(a)(4)); and
- (B) Copper: 0.001 mg/L or 0.020 mg/L when atomic absorption direct aspiration is used (only if source water compositing is done under §141.23(a)(4)).
- (iv) Be currently certified by EPA or the State to perform analyses to the specifications described in paragraph (a)(2) of this section.
- (2) States have the authority to allow the use of previously collected monitoring data for purposes of monitoring, if the data were collected and analyzed in accordance with the requirements of this subpart.
- (3) All lead and copper levels measured between the PQL and MDL must be either reported as measured or they can be reported as one-half the PQL specified for lead and copper in paragraph (a)(1)(ii) of this section. All levels below the lead and copper MDLs must be reported as zero.
- (4) All copper levels measured between the PQL and the MDL must be either reported as measured or they can be reported as one-half the PQL (0.025 mg/L). All levels below the copper MDL must be reported as zero.
 - (b) [Reserved]

[56 FR 26548, June 7, 1991, as amended at 57 FR 28789, June 29, 1992; 57 FR 31847, July 17, 1992; 59 FR 33863, June 30, 1994; 59 FR 62470, Dec. 5, 1994]

§141.90 Reporting requirements.

All water systems shall report all of the following information to the State in accordance with this section.

- (a) Reporting requirements for tap water monitoring for lead and copper and for water quality parameter monitoring. (1) A water system shall report the information specified below for all tap water samples within the first 10 days following the end of each applicable monitoring period specified in §141.86 and §141.87 and §141.88 (i.e., every sixmonths, annually, or every 3 years).
- (i) The results of all tap samples for lead and copper including the location of each site and the criteria under §141.86(a) (3), (4), (5), (6), and/or (7) under which the site was selected for the system's sampling pool;
- (ii) A certification that each first draw sample collected by the water system is one-liter in volume and, to the best of their knowledge, has stood motionless in the service line, or in the interior plumbing of a sampling site, for at least six hours;
- (iii) Where residents collected samples, a certification that each tap sample collected by the residents was taken after the water system informed them of proper sampling procedures specified in §141.86(b)(2);
- (iv) The 90th percentile lead and copper concentrations measured from among all lead and copper tap water samples collected during each monitoring period (calculated in accordance with §141.80(c)(3));
- (v) With the exception of initial tap sampling conducted pursuant to §141.86(d)(1), the system shall designate any site which was not sampled during previous monitoring periods, and include an explanation of why sampling sites have changed;
- (vi) The results of all tap samples for pH, and where applicable, alkalinity, calcium, conductivity, temperature, and orthophosphate or silica collected under §141.87(b)–(e);
- (vii) The results of all samples collected at the entry point(s) to the distribution system for applicable water quality parameters under §141.87(b)-(e).
- (2) By the applicable date in §141.86(d)(1) for commencement of monitoring, each community water system which does not complete its targeted

- sampling pool with tier 1 sampling sites meeting the criteria in §141.86(a)(3) shall send a letter to the State justifying its selection of tier 2 and/or tier 3 sampling sites under §141.86 (a)(4) and/or (a)(5).
- (3) By the applicable date in $\S141.86(d)(1)$ for commencement of monitoring, each non-transient, non-community water system which does not complete its sampling pool with tier 1 sampling sites meeting the criteria in $\S141.86(a)(6)$ shall send a letter to the State justifying its selection of sampling sites under $\S141.86(a)(7)$.
- (4) By the applicable date in §141.86(d)(1) for commencement of monitoring, each water system with lead service lines that is not able to locate the number of sites served by such lines required under §141.86(a)(9) shall send a letter to the State demonstrating why it was unable to locate a sufficient number of such sites based upon the information listed in §141.86(a)(2).
- (5) Each water system that requests that the State reduce the number and frequency of sampling shall provide the information required under §141.86(d)(4).
- (b) Source water monitoring reporting requirements. (1) A water system shall report the sampling results for all source water samples collected in accordance with §141.88 within the first 10 days following the end of each source water monitoring period (i.e., annually, per compliance period, per compliance cycle) specified in §141.88.
- (2) With the exception of the first round of source water sampling conducted pursuant to §141.88(b), the system shall specify any site which was not sampled during previous monitoring periods, and include an explanation of why the sampling point has changed.
- (c) Corrosion control treatment reporting requirements. By the applicable dates under §141.81, systems shall report the following information:
- (1) For systems demonstrating that they have already optimized corrosion control, information required in §141.81(b) (2) or (3).
- (2) For systems required to optimize corrosion control, their recommendation regarding optimal corrosion control treatment under §141.82(a).

- (3) For systems required to evaluate the effectiveness of corrosion control treatments under §141.82(c), the information required by that paragraph.
- (4) For systems required to install optimal corrosion control designated by the State under §141.82(d), a letter certifying that the system has completed installing that treatment.
- (d) Source water treatment reporting requirements. By the applicable dates in §141.83, systems shall provide the following information to the State:
- (1) If required under \$141.83(b)(1), their recommendation regarding source water treatment;
- (2) For systems required to install source water treatment under §141.83(b)(2), a letter certifying that the system has completed installing the treatment designated by the State within 24 months after the State designated the treatment.
- (e) Lead service line replacement reporting requirements. Systems shall report the following information to the State to demonstrate compliance with the requirements of §141.84:
- (1) Within 12 months after a system exceeds the lead action level in sampling referred to in §141.84(a), the system shall demonstrate in writing to the State that it has conducted a material evaluation, including the evaluation in §141.86(a), to identify the initial number of lead service lines in its distribution system, and shall provide the State with the system's schedule for replacing annually at least 7 percent of the initial number of lead service lines in its distribution system.
- (2) Within 12 months after a system exceeds the lead action level in sampling referred to in §141.84(a), and every 12 months thereafter, the system shall demonstrate to the State in writing that the system has either:
- (i) Replaced in the previous 12 months at least 7 percent of the initial lead service lines (or a greater number of lines specified by the State under §141.84(f)) in its distribution system, or
- (ii) Conducted sampling which demonstrates that the lead concentration in all service line samples from an individual line(s), taken pursuant to §141.86(b)(3), is less than or equal to 0.015 mg/L. In such cases, the total number of lines replaced and/or which

Environmental Protection Agency

meet the criteria in §141.84(c) shall equal at least 7 percent of the initial number of lead lines identified under paragraph (a) of this section (or the percentage specified by the State under §141.84(f)).

- (3) The annual letter submitted to the State under paragraph (e)(2) of this section shall contain the following information:
- (i) The number of lead service lines scheduled to be replaced during the previous year of the system's replacement schedule;
- (ii) The number and location of each lead service line replaced during the previous year of the system's replacement schedule;
- (iii) If measured, the water lead concentration and location of each lead service line sampled, the sampling method, and the date of sampling.
- (4) As soon as practicable, but in no case later than three months after a system exceeds the lead action level in sampling referred to in §141.84(a), any system seeking to rebut the presumption that it has control over the entire lead service line pursuant to §141.84(d) shall submit a letter to the State describing the legal authority (e.g., state statutes, municipal ordinances, public service contracts or other applicable legal authority) which limits the system's control over the service lines and the extent of the system's control.
- (f) Public education program reporting requirements. By December 31st of each year, any water system that is subject to the public education requirements in §141.85 shall submit a letter to the State demonstrating that the system has delivered the public education materials that meet the content requirements in §141.85(a) and (b) and the delivery requirements in §141.85(c). This information shall include a list of all the newspapers, radio stations, television stations, facilities and organizations to which the system delivered public education materials during the previous year. The water system shall submit the letter required by this paragraph annually for as long as it exceeds the lead action level.
- (g) Reporting of additional monitoring data. Any system which collects sampling data in addition to that required by this subpart shall report the results

to the State within the first ten days following the end of the applicable monitoring period under §§ 141.86, 141.87 and 141.88 during which the samples are collected.

[56 FR 26548, June 7, 1991; 57 FR 28789, June 29, 1992, as amended at 59 FR 33864, June 30, 1994]

§141.91 Recordkeeping requirements.

Any system subject to the requirements of this subpart shall retain on its premises original records of all sampling data and analyses, reports,

proved by the State and the microbiological safety of the water must be maintained.

- (1) The State must require adequate certification of performance, field testing, and, if not included in the certification process, a rigorous engineering design review of the point-of-entry devices.
- (2) The design and application of the point-of-entry devices must consider the tendency for increase in heterotrophic bacteria concentrations in water treated with activated carbon. It may be necessary to use frequent backwashing, post-contactor disinfection, and Heterotrophic Plate Count monitoring to ensure that the microbiological safety of the water is not compromised.
- (e) All consumers shall be protected. Every building connected to the system must have a point-of-entry device installed, maintained, and adequately monitored. The State must be assured that every building is subject to treatment and monitoring, and that the rights and responsibilities of the public water system customer convey with title upon sale of property.

[52 FR 25716, July 8, 1987; 53 FR 25111, July 1, 1988]

§141.101 Use of other non-centralized treatment devices.

Public water systems shall not use bottled water or point-of-use devices to achieve compliance with an MCL. Bottled water or point-of-use devices may be used on a temporary basis to avoid an unreasonable risk to health.

Subpart K—Treatment Techniques

SOURCE: 56 FR 3594, Jan. 30, 1991, unless otherwise noted.

§141.110 General requirements.

The requirements of subpart K of this part constitute national primary drinking water regulations. These regulations establish treatment techniques in lieu of maximum contaminant levels for specified contaminants.

§141.111 Treatment techniques for acrylamide and epichlorohydrin.

Each public water system must certify annually in writing to the State

(using third party or manufacturer's certification) that when acrylamide and epichlorohydrin are used in drinking water systems, the combination (or product) of dose and monomer level does not exceed the levels specified as follows:

Acrylamide=0.05% dosed at 1 ppm (or equivalent)

Epichlorohydrin=0.01% dosed at 20 ppm (or equivalent)

Certifications can rely on manufacturers or third parties, as approved by the State.

Subpart M—Information Collection Requriements (ICR) for Public Water Systems

SOURCE: 61 FR 24368, May 14, 1996, unless otherwise noted.

EFFECTIVE DATE NOTE: At 61 FR 24368, May 14, 1996, subpart M consisting of §§141.140 through 141.144 were added, effective June 18, 1996 and will expire on Dec. 31, 2000.

§141.140 Definitions specific to subpart M.

The following definitions apply only to the requirements of subpart M of this part and are arranged alphabetically.

Distribution system means the components of a PWS that are under the control of that PWS located after the point where the finished water sample is taken and that provide distribution, storage, and/or booster disinfection of finished water.

Distribution System Equivalent (DSE) sample means a sample collected from the distribution system for the purpose of comparing it with the "simulated distribution system (SDS) sample". The DSE sample shall be selected using the following criteria:

- (1) No additional disinfectant added between the treatment plant and the site where the DSE sample is collected;
- (2) Approximate detention time of water is available; and
- (3) There is no blending with finished water from other treatment plants.

Entry point to distribution system means a location following one or more finished water sample points but prior to the beginning of the distribution system.

Finished water means water that does not undergo further treatment by a treatment plant other than maintenance of a disinfection residual.

Haloacetic acids (five) (HAA5) means the sum of the concentration in micrograms per liter of the haloacetic acids mono-, di-, and trichloroacetic acid; mono-, and di-, bromoacetic acid, rounded to two significant figures.

Haloacetic acids (six) (HAA6) means the concentration in micrograms per liter of the haloacetic acids mono-, di-, and trichloroacetic acid; mono-, and di- bromoacetic acid; and bromochloroacetic acid, rounded to two significant figures.

Haloacetonitriles (HAN) means the concentration in micrograms per liter of the haloacetonitriles dichloro-, trichloro-, bromochloro-, and dibromo-acetonitrile, rounded to two significant figures.

Haloketones (HK) means the concentration in micrograms per liter of the haloketones 1,1-dichloropropanone and 1,1,1- trichloropropanone, rounded to two significant figures.

Intake means the physical location at which the PWS takes water from a water resource. Thereafter, the water is under the control of that PWS.

Notice of applicability means a notice sent by EPA to a PWS that indicates that EPA believes that the PWS must comply with some or all requirements of subpart M. The PWS is required to reply to this notice by providing information specified in the notice (e.g., retail and wholesale population served, types of water sources used, volume of water treated) by the date provided in subpart M.

Process train means some number of unit processes connected in series starting from the treatment plant influent and ending with finished water. A particular unit process may be in more than one process train.

Purchased finished water means finished water purchased by one PWS from another PWS (the wholesaler). Purchased finished water includes both purchased finished water that is redisinfected and purchased finished water that is not.

Simulated distribution system (SDS) sample means a finished water sample incubated at the temperature and de-

tention time of a "DSE sample" collected from the distribution system. Analytical results of the SDS sample will be compared with the DSE sample to determine how well the SDS sample predicts disinfection byproduct formation in the actual distribution system sample.

Total finished water means the flow (volume per unit of time) of finished water obtained from all treatment plants operated by a PWS and includes purchased finished water. This flow includes water entering the distribution system and water sold to another PWS.

Treatment plant means the PWS components that have as their exclusive source of water a shared treatment plant influent and that deliver finished water to a common point which is located prior to the point at which finished water enters a distribution system or is diverted for sale to another PWS. For these components of the PWS to be considered part of one treatment plant, the PWS must be able to collect one representative treatment plant influent sample, either at a single sample point or by a composite of multiple influent samples, and there must exist a single sampling point where a representative sample of finished water can be collected. For the purpose of subpart M, a treatment plant is considered to include any site where a disinfectant or oxidant is added to water prior to the water entering the distribution system. Facilities in which ground water is disinfected prior to entering a distribution system, and facilities in which purchased finished water has a disinfectant added prior to entering a distribution system, are considered treatment plants.

Treatment plant influent means water that represents the water quality challenge to a particular plant.

Treatment system means all treatment plants operated by one PWS.

Trihalomethanes (four) (THM4) means the sum of the concentration in micrograms per liter of the trihalomethanes chloroform, bromodichloromethane,

dibromochloromethane, and bromoform, rounded to two significant figures.

Unit process means a component of a treatment process train which serves any treatment purpose such as mixing or sedimentation for which design and operating information is requested in §141.142(a), Table 6c, of this subpart.

Water resource means a body of water before it passes through an intake structure. Examples of a water resource include a river, lake, or aquifer. For a PWS which purchases finished water, the water resource is the wholesale PWS which supplies the purchased finished water. Generally water resources are not under the direct control of a PWS.

Watershed control practice means protection of a water resource from microbiological contamination prior to the water entering an intake. These protective measures might include, but are not limited to, a watershed control program approved under §141.71(b)(2) of this part, or land use restrictions.

§141.141 General requirements, applicability, and schedule for information collection.

- (a) General requirements. (1) The purpose of subpart M is to collect specified information from certain PWSs for a limited period of time. Accordingly, subpart M is of limited duration and is effective for a defined period (see §141.6 (i) and §141.141(e) of this part). Since subpart M does not establish continuing obligations, a PWS that has completed all of its requirements at the required duration and frequency may discontinue its information collection efforts even if subpart M is still in effect.
- (2) For the purpose of this subpart, a PWS shall make applicability determinations based on completion of data gathering, calculations, and treatment plant categorization specified in Appendix A to paragraph (a) of this section
- (3) For the purpose of this subpart, a PWS that uses multiple wells drawing from the same aquifer and has no central treatment plant is considered to have one treatment plant for those wells and shall conduct required monitoring under this specification. A PWS with multiple wells in one or more aquifers that are treated in the same treatment plant is considered to have one treatment plant for those wells and

shall conduct required monitoring under this specification.

- (i) To the extent possible, the PWS should sample at the well with the largest flow and at the same well each month for the duration of required monitoring.
- (ii) A PWS must report information from §141.142(a) Tables 6a through 6e of this subpart for each well that the PWS sampled.
- (4) For the purpose of this subpart, a PWS shall treat ground water sources that have been classified by the State as under the direct influence of surface water by May 14, 1996, as surface water sources. A PWS shall treat ground water sources that either have not been classified by the State (as under the direct influence of surface water or not) or have been classified by the State as ground water, by May 14, 1996, as ground water sources.

APPENDIX A

§ 141.141

calendar months in 1995 due to construction and/or maintenance, the applicability determination will be based on those months in 1995 during which the treatment system or treatment plant was in operation, plus the calendar months from 1994 that correspond to those months of 1995 during which the treatment system or treatment plant was inoperable. The total time period shall be 12 months.

—Treatment systems or treatment plants whose total operational lifetime is fewer than 12 calendar months as of December 1995 are not required to comply with subpart M requirements.

—PWSs that purchase all their water from one or more other PWSs and do not further treat any of their water are not required to comply with subpart M requirements.

Applicability determination. To determine applicability, the PWS is required to collect certain operational data and perform specified mathematical operations. All operational data and calculated values will be expressed as either "F" (for flow) or "P" (for population), with a one or two character subscript. Table A-1 contains a more detailed explanation.

TABLE A-1.—: APPENDIX A SUBSCRIPT IDENTIFICATION PROTOCOL

General

- "F" indicates a flow value. The PWS must use million gallons per day (MGD) to express the flow throughout its calculations.
- "P" indicates a population value, expressed as a number of people. Subscripts.
- 1. " P_R " is retail population, " F_W " is wholesale flow, and " F_N " is purchased finished water that is not further treated.
- 2. Each "F" value (in Table A-2) or "P" value (in Table A-4) will have a two character designator.
 - a. The first character in the subscript indicates the source type. Possible entries are "S" (for surface water or ground water under the direct influence of surface water), "G" (for ground water not under the direct influence of surface water), "P" (for finished water purchased from another PWS and further treated at the entrance to the distribution system, such as by redisinfection), and "C" (for combined, or the sum of all water treated by the PWS, including purchased water that is further treated at the entrance to the distribution system).
 - b. The second character in the subscript indicates the specific identification of the treatment plant. This will be a number (e.g., 1, 2, 3, * * *, with # being a non-specific designator) and "T" (for a Total).

Data from operational records. The PWS shall determine the following information based on operational records.

 $-P_R$

$$\begin{split} -F_{CT} = & \text{finished water produced in all of the PWS's treatment plants (calculated by adding the combined flows from each treatment plant (Σ ($F_{C\#}$)). \\ = & \underline{\qquad} (MGD) \end{split}$$

TABLE A-4.—TREATMENT PLANT CATEGORIES

$P_{\mathrm{G}\#}$	NA. NA. NA. NA. NA. Largest P _{Olt} .
P _{S#}	Zero
P _{C#}	2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000 2100,000
Pcr	≥100,000
tment plant category	

401

40 CFR Ch. I (7-1-96 Edition)

§ 141.141

- (b) Applicability. (1) Table 1 of this paragraph is a summary of treatment plant categorization under the

provisions of Appendix A to paragraph (a) of this section. $\,$

TABLE 1.—TREATMENT PLANT CATEGORIES

Treatment plant category	PWS combined population served	Treatment plant combined population served	Treatment plant surface water population served	Treatment plant ground water population served
A B C C C C C C C C C C C C C C C C C C		≥100,000 Storows <100,000 and is largest plant Plant serves <100,000 and is largest plant Plant serves <100,000 and is largest plant Plant serves <100,000 and is not largest plant PWS Plant serves <100,000 and is not largest plant in PWS NA Storows <100,000 and is not largest plant in PWS NA Storows <100,000 and is not largest plant in PWS NA Storows <100,000 and is not largest plant in PWS NA Storows S	21	NA. NA. NA. <100,000. <100,000. <100,000. Largest ground water plant.
NA-not applicable.				

(2) Table 2 of this paragraph specifies applicability for requirements contained in §§141.142, 141.143, and 141.144 of this part,

based on treatment plant categorization determined under the provisions of Appendix A to paragraph (a) of this section.

TABLE 2—SUBPART M APPLICABILITY

0.1			Categori	es of treatment	t plants1		
Subpart M Requirements -	Α	В	С	D	Е	F	G
		§141.142.—D	BP and Relat	ed Monitoring			
Table 1a and 1b	Х	Х	Х	Х	Х	Х	
Table 22	X	X	X	X	X	X	
Table 32	X	X	X	X	X	X	
Table 4a and 4b ²	X	X	X	X	X	X	
Table 5a and 5b ²	X	X	X	X	X	X	
Table 6	Χ	X	Χ	X	X	Χ	
		§ 141.143—	Microbiologica	I Monitoring			
Treatment plant influent monitoring	Х		Х		Х		
ing ³	Х		X		X		
	§ 141.1	144—Applicabili	ty Monitoring	and Treatmen	t Studies		
Treatment study applica-							
bility monitoring	X	X	X	X			X
Pilot-scale treatment stud-							
ies4	X	X					
Bench- or pilot-scale treatment studies ⁴	Х	х	X	X			x

¹ As determined by Appendix A to paragraph (a) of this section.
² Table 2 required only for treatment plants using chloramines. Table 3 required only for treatment plants using hypochlorite so-

§ 141.141

TABLE 3.—MICROBIOLOGICAL MONITORING R

µg/l for THM4 and less than 30 µg/l for HAA5. Quarterly averages are the arithmetic average of the four distribution system samples collected under the requirements of §141.142(a)(1) of this subpart.

(ii) Treatment plants using surface water that do not exceed a TOC annual average of 4.0 mg/l in the treatment plant influent, measured in accordance with §§141.141(f)(4) and 141.144(a) of this subpart and calculated by averaging the initial 12 monthly TOC samples.

samples.

(iii) Treatment plants using only ground water not under the direct influence of surface water that do not exceed a TOC annual average of 2.0 mg/l in the finished water, measured in accordance with §§

§ 141.141

JOINT STUDIES REQUIREMENT FOR TREATMENT PLANTS WITH A POPULATION SERVED OF <500,000

Number of plants	Minimum studies to be conducted
2 3 4	1 pilot (GAC or membrane). 1 pilot and 1 bench (GAC or membrane). 2 pilots (GAC and/or membrane). 2 pilots (GAC and/or membrane), 1 bench (GAC or membrane).
5	2 pilots (GAC and/or membrane), 1 bench (GAC or membrane).
6	2 pilots and 2 bench (GAC and/or membrane).

JOINT STUDIES REQUIREMENT FOR TREATMENT PLANTS

paragraphs (e)(7)(ii)(A) through (F) of this section for all treatment plants to be included in the joint study not later than May 14, 1997. The letter shall be signed by all PWSs planning to participate in the joint study. All PWSs shall submit a combined application for joint studies approval to EPA (including 12 months of treatment plant influent TOC or finished water TOC results or UFCTOX results, as appropriate, for each treatment plant to be included in the joint study) not later than November 14, 1997.

(A) Data to support their common water resource designation.

(B) Information to demonstrate that treatment plants have similar treatment trains.

(C) Information that treatment plants are in the same size category.

(D) The treatment plant influent TOC or finished water TOC results, or UFCTOX results, as appropriate, from the first six months of monitoring.

(E) What studies will be conducted (i.e.,

(E) What studies will be conducted (i.e., combination of bench/pilot and GAC/membrane).

(F) Any additional supporting data.

(iii) Approval of request for alternative to treatment studies. A PWS that believes it qualifies to avoid the requirements for a treatment study under the provisions for an alternative in paragraph (e)(5) of this section shall submit a letter of intent expressing its intention to contribute funds to the cooperative research effort not later than May 14, 1997. The letter shall identify the other treatment plants using the same water resource which will be conducting studies. Each PWS shall submit an application for approval of alternative to treatment studies to EPA (including 12 months of treatment plant influent TOC or finished water TOC results or UFCTOX results, as appropriate) not later than November 14, 1997. EPA shall notify the PWS whether a treatment study is required (because there is no other appropriately sized treatment plant using the same water resource conducting a treatment study) or if the PWS can avoid the study by contributing funds to the cooperative re-search effort specified in paragraph (e)(5) of this section.

(iv) Approval of request to use grandfathered studies. A PWS that believes it qualifies to avoid the requirements for a treatment study under the grandfathered study provisions of paragraph (e)(6) of this section shall submit the following information not later than February 14, 1997: a description of the study, the equipment used, the experimental protocol, the analytical methods, the quality assurance plan, and any reports resulting from the study. EPA shall review the information and inform the PWS whether or not the prior study meets the ICR requirements. Not later than November 14, 1997, the PWS must submit study data in the format specified in "ICR Manual for Bench- and Pilot-

scale Treatment Studies", EPA 814–B-96-003, April 1996. An approved grandfathered study can be justification for common water resource PWSs contributing to the cooperative research effort under the provisions of paragraph (e)(5) of this section, but may not be used as joint treatment studies unless it incorporates the requirements listed in §141.141(e)(4) of this section and the PWS submits written concurrence of the PWS which conducted the study.

(f) Effective dates. (1) A PWS shall respond to the Notice of Applicability sent by EPA within 35 calendar days of receipt of that no-

(ii) A PWS required to conduct a disinfection byproduct precursor removal study (treatment study) under the provisions of paragraph (e)(1) of this section shall begin conducting such treatment studies not later than April 14, 1998 and submit the report(s) of the completed study to EPA not later than July 14, 1999.

§141.142 Disinfection byproduct and related monitoring.

(a) Monitoring requirements. Samples taken under the provisions of this section shall be taken according to the procedures described in the "ICR Sampling Manual,'' EPA 814-B-96-001, April 1996. If a treatment plant configuration results in two required sampling points from any table in this section when in fact it is a single location, duplicate analyses are not required for the same location and time. A PWS that uses purchased finished water shall determine whether any monitoring of treatment plant influent is required under paragraphs (a)(2) through (5) of this section because of certain treatment (e.g., use of hypochlorite or chlorine dioxide) of the water provided by the selling PWS.

(1) A PWS shall obtain a complete set of samples at the frequency and loca-

TABLE 1A.—MONTHLY MONITORING REQUIREMENTS FOR TREATMENT PLANTS—Continued

§ 141.142

for analysis to EPA, following the procedures contained in the "ICR Sam- l996. Pling Manual," EPA 814-B-96-001, April 1996.

TABLE 2.—ADDITIONAL QUARTERLY MONITORING FOR TREATMENT PLANTS USING CHLORAMINES

Sampling point	Quarterly analyses
Treatment plant influent for purchased finished water ¹	Cyanogen Chloride ² . Cyanogen Chloride ² .

² Analysis and submission of data for both assimilable organic carbon (AOC) and biodegradable organic carbon (BDOC) are optional. Analytical methods for AOC and BDOC are listed in "DBP/ICR Analytical Methods Manual," EPA 814–B–96–002, April 1996.

(5) Additional sampling requirements for PWSs using chlorine dioxide. For each treatment plant that uses chlorine dioxide for treatment or disinfection residual maintenance, a PWS shall also conduct the additional sampling identified in Tables 5a and 5b of this section. A PWS shall collect samples for bromate taken under the provisions of this paragraph in duplicate, with the PWS analyzing one aliquot and submit-

ting the other aliquot for analysis to EPA, following the procedures contained in the "ICR Sampling Manual," EPA 814-B-96-001, April 1996. A PWS

PWS shall use a flow-proportional interpolation of the clearwell tracer study. For unit processes other than a clearwell, a PWS shall either estimate T_{10} or use an interpolation of tracer study T_{10} using multiple flows for each unit process in which a disinfectant residual exists.

(iii) Chemicals in use at time of sampling. Report chemical name, chemical dose at time of sampling, and measurement formula. Measurement formulas

(e.g., mg/l as Aluminum) shall be provided to determine the correct amount of the chemical compound being added.

- (iv) Short circuiting factor (optional). The short circuiting factor is an assumed value for the ratio of T_{10} to nominal contact time (volume divided by flow).
- (v) $T_{\rm 50}$ (minutes) (optional). $T_{\rm 50}$ should be reported only if based on a tracer study.

TABLE 6a.—PUBLIC WATER SYSTEM INFORMATION

Permanent data	Design data	Monthly data
Public Water System: Utility Name Public Water Supply Identification Number (PWSID) Water Industry Data Base (WIDB) Number [Optional] Official Contact Person: Name Mailing Address Phone Number [optional] FAX Number [optional] ICR Contact Person: Name Mailing Address Phone Number [optional] FAX Number [optional]		Sampling Dates: From (date) To (date). Retail population on date of sampling. Wholesale population on day of sampling. Monthly average Retail flow (MGD). Monthly average Whole

TABLE 6c.—UNIT PROCESS INFORMATION

Design data

 ⁶ A PWS is not required to report information for ground water that is not treated.
 7 A PWS is required to report information for purchased finished water only if that water is further treated.
 8 Multiple "Intakes" combine into one "Plant Influent." Each treatment plant has only one treatment plant influent. The treatment plant influent shall mark the point in the treatment plant where the "Plant Influent" sample shall be collected as described in Tables 1, 2, 3 and 5 of this section.

	Monthly data	
I ABLE 6C.—UNII PROCESS INFORMATION—CONTINUED	Design data	If yes: Plain sedimentation (yes/no) Coagulation/sedimentation (yes/no) Filtration (yes/no) Disinfection (yes/no) Other Treatment (Text)

Rapid Mix	J Mix
Type of mixer (one of the following): 1 Mechanical 2 Hydraulic 3 Static	Mean velocity gradient "G" (sec-1).4 Liquid volume (gallons).
4 Other Baffling type ²	
Flocculation Basin	ion Basin
Type of mixer (one of the following):	Mean velocity gradient "G" (sec-1) in each stage.4 Liquid volume of each stage (gallons).
1 Mechanical 2 Hydraulic Number of stages Baffling type ²	
Sedimentation Basin	tion Basin
Tube settler brand name Plate settler brand name Baffling type 2	Liquid volume (gallons). Surface area (ft²).

Type (check all that apply): Rectangular basin Upflow Reactor-clarifier Sludge blanket Tube settler brand name Plate settler brand name Baffling type 2	
Adsorption Clarifier	Clarifier
Brand Name Baffling type ²	Liquid volume (gallons). Surface area (ft²).
Dissolved Air Flotation	Flotation
Baffling type ²	Liquid volume (gallons). Surface area (ft²). Percent recycle rate (%). Recycle stream pressure (psi).
Recarbonation Basin	on Basin
Baffling type ²	Liquid volume (gallons). Surface area (ft²).
Filtration	ио
Media Type (one of the following):	Liquid volume (gallons). Surface area (ft²). Average filter run time (hr).
1 Dual media (Anthracite/Sand) 2 GAC over sand 3 Tri media (Anthracite/Sand/Garnet) 4 Sand 5 Deep bed monomedia anthracite 6 Deep bed monomedia GAC 7 Greensand 8 Other Design depth of GAC (inch) Minimum water depth (inch) Minimum water depth to top of media (ft) Depth from top of media to top of backwash trough (ft)	

σ
Φ
2
₻
5
ŏ
Ī
ż
O
누
È
~
9
Ż
<u>_</u>
õ
円
ŏ
Ř
ш.
느
≤
ヿ
١,
ည
ш
긃
Æ
\vdash

TABLE 6C.—UNIT PROCESS INFORMATION—Continued	NFORMATION—Continued
Design data	Monthly data
Slow Sand Filtration	Filtration
Media type Media depth Media size	Surface area (It²). Average filter run length. Cleanling method.
Diatomaceous Earth Filter	Earth Filter
	Effective DE filter surface (ft²). Precoat (lb/ft²). Bodyfeed (mg/l). Run length (hours).
Granular Activated Carbon—Post-Filter Adsorber	n-Post-Filter Adsorber
Manufacturer of activated carbon Type of activated carbon	Liquid volume (gallons). Surface area (fr²). Carbon volume (fr²). Empty bed contact time (minutes). Operating reactivation frequency (days).
Membranes	ines
Model name: Type (one of the following): 1 Reverse osmosis 2 Nanofitration 3 Ultrafitration 5 Electrodalysis Number of stages Molecular weight cutoff (dattons) Design flux (gpolff?) Design flux (gpolff?)	Surface area (ft²). Percent recovery (%). Operating pressure (psi). Operating flux (gpd/ft²). Cleaning method (one of the following) Hydraulic. Chemical. Cleaning frequency (days).
Air Stripping	Buid
Packing height (ft) Design air to water ratio (volume/volume) Type of packing (Name) Nominal size of packing (inch)	Horizontal cross-section area (ft²). Air flow (SCFM).³

Resin (Name) Resin manufacturer Design exchange capacity (equff³) ³ Bed depth (ft)	lon Exchange	ange
	acity	Liquid volume (gallons). Surface area (ft²).

Maximum residence time (days).

Average residence time (days).

Number of disinfection booster stations in operation at time of sampling:

Typical maximum residence time (days)

Average residence time (days)

Design volume of distribution system storage (million gallon)

Total surface area of open reservoirs in distribution system storage (#2)

Distribution System

Monthly data

TABLE 6d.—ADDITIONAL PROCESS TRAIN INFORMATION

Design data

Disinfectant Addition	Addition
	Disinfectants in use at time of sampling. Dose (mg/l). Chemical formula (e.g., mg/l as chlorine).
Finished Water Sample Point (Plant Effluent) 12	oint (Plant Effluent) 12
	Monthly average flow (MGD). Flow at time of sampling (MGD).
¹ This shall mark the end of a treatment plant.	

I finds shall mark the end of a treatment plant.
2 Unless the finished water of this treatment plant is blended with finished water from another treatment plant, this point is also the entry point to the distribution system.

TABLE 6e.—FINISHED WATER DISTRIBUTION INFORMATION

Design data	Monthly data
Entry Point to Distribution System 1	ibution System 1
	Monthly average flow (MGD). Flow at time of sampling (MGD).
Wholesale Information 2	formation ²
Name of purchaser	Flow at time of sampling (MGD).

¹Multiple treatment plants can feed into one entry point to the distribution system. If there is only one treatment plant then "Finished Water Sample Point (Plant Effluent)" and "Entry Point to Distribution System" are the same.

2 The supplying public water system shall report "Wholesale Information" for each public water system which purchases finished water. Chlorine.
Chloramine.
Chlorine dioxide.
Range of distribution system disinfectant dosages.
Chlorine: High (mg/l), Low (mg/l),
Chloramine: High (mg/l), Low (mg/l),
Chlorine dioxide: High (mg/l), Low (mg/l).

§ 141.142

(b) Analytical methods. (1) A PWS $\,$ Table 7 of this section for conducting shall use the methods identified in $\,$ analyses required by this subpart.

TABLE 7.—ANALYTICAL METHODS APPROVED FOR SUBPART M

	Standard method ³	4500-CI B 9		6251 B	5320 B 5310 B, 5310 C, 5310 D	5710 C 2340 B.7 2340 C 4500-NH ₃ D, 4500-NH ₃ G 2350 B
Methodology 1	EPA method		551.14	552.1,5 552.24	551.14 551.14 300.06 300.06 300.06	350.16
	40 CFR reference ²	§141.23(k)(1) §141.74(a)(1) §141.74(a)(2)	§141.24(e)			§136.3, Table 1b ⁸
Annalida	Alayte	pH, alkalinity, calcium hardness, temperature Turbidity Disirlectant residuals: free chlorine, total chlorine, chlorine dixide ozona	m, bro	Haloacetic acids: mono-, di-, and trichloroacetic acid; acid; hromo- and dibromoacetic acid; hromorphropagic acid	Chloral hydrate: Haloacetontriles, and trichloroacetontrile; bromochloroacetontrile; dibromoacetontrile; Haloketones: 1,1-Dichloropropanone; 1,1,1- trichloropropanone. Chloropte: Chloroite: Bromide: Bromate Frontal Organic Halide (TOX) Total Organic Halide (TOX) I N. Aschange at 254 mm	

Analyses shall be conducted by using mandatory analytical and quality control procedures contained in "DBP/ICR Analytical Methods Manual" EPA 814–B-96-002.

2 Currently approved methodology for drinking water compliance monitoring is listed in Title 40 of the Code of Federal Regulations in the sections referenced in this column. The 18th and 19th edition of Standard Methods for the Examination of Water and Wastewater, American Public Health Association, 1015 Fifteenth Street NW, Washington, D.C. 20005, are equivalent for a Except where noted, all methods refer to the 19th edition of Standard Methods for the Examination of Water and Wastewater, American Public Health Association, 1015 Fifteenth Street with the methods refer to the 19th edition of Standard Methods for the Examination of Wastewater, American Public Health Association, 1015 Fifteenth Street will washington, D.C. 20005.

4 Analytical method reprinted in "Reprints of EPA Methods for Chemical Analyses Under the Information Collection Rule", EPA 814–B-96-006. Originally published in "Methods for the Determination of Organic Compounds in Drinking Water—Supplement II." EPA/600/R-95/131, August 1995, PB92-207703.

5 Analytical method reprinted in "Reprints of EPA Methods for Chemical Analyses Under the Information Collection Rule", EPA 814–B-96-006. Originally published in "Methods for the Determination of Inorganic Substances in Environmental Samples." EPA/600/R-93/100, August 1993, PB92-207703.

7 The following methods, cited at § 141, 233(1) of high spati, can be used to determine calcium and magnesium concentrations for use in conjunction with Standard Method 3120, B, or ASTM Method D511-38 B.

8 Standard Method 4500-CI B is approved only for determine residual concentrations in hypochlorite stock solutions. This method 4500-CI B is approved only for determine residual concentrations in hypochlorite stock solutions. This method was not year only the automated electrode method reprinted residual concentrations in hypochlorite stock solutions. This meth

- (2) Analyses under this section shall be conducted by laboratories that have received approval from EPA to perform sample analysis for compliance with this rule. Laboratories that wish to become approved shall contact EPA in writing at USEPA, Technical Support Division, ICR Laboratory Coordinator, 26 W. Martin Luther King Drive, Cincinnati, OH 45268 not later than November 14, 1996. Requirements for approval are included in "DBP/ICR Analytical Methods Manual", EPA 814-B-96-002.
- (c) Reporting. (1) A PWS shall report required data and information collected under the provisions of paragraph (a) of this section to EPA, using an EPA-specified computer readable format. A PWS shall submit a monthly report that indicates the analytical results of all samples collected, including quarterly samples taken in that same month, and all process train data. These reports shall be submitted on a diskette no later than the fourth month following sampling. In addition to the information in Tables 1 through 6 in paragraph (a) of this section, reports shall include PWSID, ICR plant identification, sample date, analysis date, laboratory identification numbers, analytical methods used, sample identification numbers, quality assurance code, internal standards, surrogate standards, and preserved sample pH, if appropriate.
- (2) Additional Requirements. A PWS shall submit a DBP and related monitoring sampling plan for EPA approval, using software provided by EPA, for each treatment plant specified in §141.141(b)(2) of this subpart that indicates sampling point locations and monitoring to be conducted at each point, and process treatment train information. This sampling plan shall be submitted to EPA at the same time and on the same diskette as the microbiological sampling plan required by §141.143(c)(3) and no later than eight weeks after the PWS receives the Notice of ICR Final Applicability Determination from EPA, using the procedure specified in "ICR Sampling Manual", EPA 814-B-96-001, April 1996.
- (3) All reports required by this section shall be submitted to USEPA (ICR4600), ICR Data Center, Room 1111

- East Tower, 401 M Street SW., Washington, DC 20460.
- (4) The PWS shall keep all data for at least three years following data submission to EPA.
- (d) Incorporation by reference. The documents and methods listed in paragraphs (d) (1) and (2) of this section are incorporated by reference for purposes specified in this section. This incorporation by reference was approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR Part 51. Copies may be inspected at USEPA, Drinking Water Docket (4101), 401 M Street SW., Washington, DC 20460, or at Office of the Federal Register, 800 North Capitol Street, NW., Suite 700, Washington, DC.
- (1) "Standard Methods for the Examination of Water and Wastewater," 19th edition, 1995. Available from the American Public Health Association, 1015 Fifteenth Street, NW., Washington, DC 20005.
- (2) "Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems using Surface Water Sources", Appendices C and O, 1991. Available from American Water Works Association, 6666 West Quincy Avenue, Denver, CO 80235.

§141.143 Microbial monitoring.

- (a) Monitoring requirements. (1) Parameters. A PWS shall sample for the following parameters for the period specified in §141.141(d) of this subpart and at the location specified and using the analytical methods specified in paragraphs (a)(2) and (b), respectively. of this section. For each sample, a PWS shall determine the densities of total fecal coliforms coliforms. coli, Escherichia Giardia, Cryptosporidium, and total culturable viruses for each treatment plant required to monitor under the provisions of §141.141(b) of this subpart.
- (2) Monitoring locations. (i) A PWS shall collect one sample of the treatment plant influent at the frequency specified in §141.141(d) of this subpart.
- (A) A sample of treatment plant influent shall be taken at a location at the upstream end of a treatment plant where waters from all intakes are

blended prior to any treatment or chemical addition.

(B) For treatment plants that have multiple intakes and add chemicals at the intake, the PWS shall take an intake sample of the water resource with the poorest microbiological quality (or, if that cannot be determined, the water resource with the highest flow) collected before chemical addition and before pretreatment. If the intakes are expected to have the same source water quality, one representative intake sample may be taken. If a disinfectant is added at or before the intake (e.g., for zebra mussel control), the sample shall be taken in the vicinity of the intake in such manner that the sample is not contaminated by the disinfectant.

(ii) A PWS that, during any of the first twelve months of monitoring at the treatment plant influent, detects 10 or more Giardia cysts, or 10 or more Cryptosporidium oocysts, or one or more total culturable viruses, in one liter of water; or calculates a numerical value of the Giardia or Cryptosporidium concentration equal to or greater than 1000 per 100 liters or virus concentration equal to or greater than 100 per 100 liters; or detects no pathogens in the sample and calculates a numerical value of the detection limit for Giardia or Cryptosporidium concentration equal to or greater than 1000 per 100 liters or virus concentration equal to or greater than 100 per 100 liters; shall also collect one sample of finished water per month at each such treatment plant, beginning in the first calendar month after the PWS learns of such a result. The sample of finished water shall be collected at a point after which all treatment processes for a particular treatment plant are complete (including the clearwell and final point of disinfection) and before the distribution system begins. For each sample of finished water, PWSs shall determine the density of total coliforms, fecal coliforms or E. coli, Giardia, Cryptosporidium, and total culturable viruses. A PWS shall continue finished water monitoring monthly until 18 months of treatment plant influent monitoring has been completed.

(iii) In lieu of conducting finished water monitoring of Giardia and Cryptosporidium specified in paragraph (a)(2)(ii) of this section, a PWS may notify EPA in its response to the notice of applicability required by paragraph (c)(3)(i) of this section that the PWS will comply with the alternative monitoring requirements in paragraphs (a)(2)(iii) (A) and (B) of this section. The PWS shall still conduct finished water monitoring for all other microorganisms, except for *Giardia* and *Cryptosporidium* monitoring in the finished water.

(A) The PWS measures the particle counts in the treatment plant influent, at points immediately prior to filtration and after filtration (but before the addition of post-filtration chemicals). Particle counting shall be conducted on the same treatment train as is sampled for monitoring conducted under the provisions of §141.142(a) of this subpart. Such samples shall be collected monthly during the entire 18-month monitoring period, using the procedures contained in the "ICR Sampling Manual", EPA 814-B-96-001, April 1996. The PWS may use either grab or continuous particle counting. Particle counting shall be conducted during the same time as protozoa monitoring required by paragraph (a)(2)(iii)(B) of this section.

(1) If grab sampling is conducted, the PWS shall collect 12 samples per location at the treatment plant influent, filter influent, and filter effluent, over either a 24-hour period or the duration of the filter run, whichever is shorter.

(2) If continuous particle counting is conducted, the PWS shall collect 12 instrument readings per location, evenly spaced in time, at the treatment plant influent, filter influent, and filter effluent, over either a 24-hour period or the duration of the filter run, which-

of sampling. The PWS shall collect Giardia and Cryptosporidium samples during the same time period as it is conducting particle counting. The minimum sample volume for Giardia and Cryptosporidium analyses shall be 100 liters for treatment plant influent and 1,000 liters for water that has undergone any treatment. The PWS may use results of monitoring for Giardia and Cryptosporidium in the treatment plant influent specified in paragraph (a)(2) of this section to meet the requirements of this paragraph as long as such monitoring meets the requirements of both this paragraph and paragraph (a)(2) of this section.

(iv) If a PWS has monitored total coliforms, fecal coliforms, or E. coli in the treatment plant influent for at least five days/week for any period of six consecutive months beginning after January 1, 1994 and 90% of all samples taken in that six-month period contained no greater than 100 total coliforms/100 \bar{ml} , or 20 fecal coliforms/100 ml, or 20 E. coli/100 ml, the PWS may request to not conduct virus monitoring for that treatment plant, for the duration of the requirement. Even if approved, the PWS may subsequently be required to monitor under the criteria in paragraph (a)(2)(iv)(A) of this section. This request shall be submitted as part of the response to the notice of applicability required by paragraph (c)(3)(i) of this section.

(A) If the PWS is subsequently required to monitor the finished water under the provisions of paragraph (a)(2)(ii) of this section, the PWS shall monitor, along with the other specified organisms, total culturable viruses, as specified in paragraph (a)(2)(i) of this section for treatment plant influent and as specified in paragraph (a)(2)(ii) of this section for finished water, until 18 months of microbial monitoring is completed.

(B) A PWS may use coliform data collected under §141.71(a)(1) of this part for this purpose but, if this is done, the PWS shall submit two separate monitoring reports. One report, to meet the requirements of §141.71(a)(1) of this part, shall continue to be submitted as required by subpart H of this part. The other report shall be submitted to meet

the requirements of paragraph (c)(3) of this section.

(C) If a PWS does not provide EPA with six months of suitable coliform results as part of its response to the notice of applicability, the PWS shall begin virus monitoring. If a PWS begins virus monitoring and subsequently provides EPA with six months of coliform results that are at or below the indicated density limit, and EPA approves the request to not conduct virus monitoring, the PWS may avoid subsequent treatment plant virus monitoring.

(b) Analytical Methods. (1) A PWS shall use the methods listed in paragraphs (b)(1)(i) through (v) of this section for monitoring under this subpart.

(i) Fecal coliforms-specified at §141.74(a)(1) of this part, except that whenever paired source water samples and finished water samples are to be collected, only the fecal coliform procedure (Standard Method 9221E), as specified in §141.74(a)(1) of this part, using EC Medium, can be used. The time between sample collection and initiation of sample analysis shall not exceed eight hours. Samples shall be chilled, but not frozen, and shipped at a temperature of less than 10°C. Samples not processed immediately at the laboratory shall be refrigerated. The laboratory must invalidate samples that arrive frozen or at a temperature greater than 10°C

(ii) Total coliforms—specified at §141.74(a)(2) of this part. The time between sample collection and initiation of sample analysis shall not exceed eight hours. Samples shall be chilled, but not frozen, and shipped at a temperature of less than 10°C. Samples not processed immediately at the laboratory shall be refrigerated. The laboratory must invalidate samples that arrive frozen or at a temperature greater than 10°C.

(iii) E. coli—as specified by §141.21(f)(6)(i) through (iii) of this part, except that the density shall be reported. PWSs using the EC+MUG and ONPG-MUG tests shall use either a 5-tube or 10-tube 10-ml configuration, with serial dilutions of the original sample as needed, and report the Most Probable Number. PWSs may also use a commercial multi-test system for E.

coli enumeration, as long as they use M-Endo medium for the initial isolation of the organisms, pick every colony on the plate with the appearance of a total coliform, and streak it for purification before subjecting the colony to a multi-test system. The time between sample collection and initiation of sample analysis, regardless of method used, shall not exceed eight hours. Samples shall be chilled, but not frozen, and shipped at a temperature of less than 10°C. Samples not processed immediately at the laboratory shall be refrigerated. The laboratory must invalidate samples that arrive frozen or at a temperature greater than 10°C.

- (iv) Giardia and Cryptosporidium—ICR Protozoan Method, as described in "ICR Microbial Laboratory Manual", EPA 600/R-95/178, April 1996.
- (v) Total culturable viruses—Virus Monitoring Protocol, as described in "ICR Microbial Laboratory Manual", EPA 600/R-95/178, April 1996.
- (2) Laboratories. A PWS shall use EPA-approved laboratories to analyze for Giardia, Cryptosporidium, and total culturable viruses. A PWS shall use laboratories certified for microbiology analyses by either EPA or a State under the EPA or State drinking water program for the analysis of total coliforms, fecal coliforms, and E. coli, Laboratories that wish to become approved shall contact EPA in writing at USEPA, Technical Support Division, ICR Laboratory Coordinator, 26 W. Martin Luther King Drive, Cincinnati, OH 45268 not later than August 14, 1996. Laboratory approval criteria Cryptosporidium, and total Giardia, culturable viruses are found in the 'ICR Microbial Laboratory Manual", EPA 600/R-95/178, April 1996.
- (3) A PWS shall send EPA a virus archive sample prepared as described in Chapter VIII of "ICR Microbial Laboratory Manual", EPA 600/R-95/178, April 1996, for each water sample identified in paragraph (b)(3)(i) or (ii) of this section.
- (i) Samples of treatment plant influent and finished water, for every month after the PWS learns that viruses were detected in any previous sample of finished water.
- (ii) Samples of treatment plant influent and finished water, regardless of

whether viruses are detected in the finished water, for every month after the PWS learns that a density of at least 10 viruses/L was detected in any previous treatment plant influent water sample.

(iii) A PWS may arrange to have virus samples shipped directly to EPA by its virus laboratory for archiving.

- (iv) Samples shall be sent on dry ice to ICR Virus Archiving Coordinator following the procedures specified in "ICR Microbial Laboratory Manual", EPA 600/R-95/178, April 1996.
- (c) Reporting. (1) A PWS shall report data and information required under paragraphs (a) and (b) of this section using an EPA-specified computer readable format. A PWS shall submit a monthly report on a diskette, no later than the fourth month following sampling, that indicates the analytical results of all samples collected. Reports shall include PWSID, ICR plant identification, sample date, analysis date, laboratory identification numbers, analytical methods used, sample identification numbers, analytical batch numbers, quality assurance code, and processing batch numbers, if appro-
- (2)(i) For a PWS using the alternative to Giardia and Cryptosporidium monitoring in paragraph (a)(2)(iii) of this section, the PWS shall report to EPA the mean value in each size range of the 12 particle counting values collected over the sampling period. In addition, during the four consecutive months when PWS collects Giardia the Cryptosporidium samples specified in paragraph (a)(2)(iii)(B) of this section, the PWS shall report to EPA, for each measured site, the densities of Giardia and Cryptosporidium at each measured site. This information shall be submitted at the same time as the report required by paragraph (c)(1) of this sec-
- (ii) A PWS that is not required to monitor for total culturable viruses under the provisions of paragraph (a)(2)(iv) of this section shall report to EPA the dates and results of all total coliform, fecal coliform, or *E. coli* monitoring used by the PWS to determine that additional virus monitoring is unnecessary. The report shall indicate all data collected during the six-month

used to calculate compliance with this requirement.

- (3) Additional Requirements. A PWS shall submit a microbiological sampling plan for EPA approval, using software provided by EPA, for each treatment plant specified in §141.141(b) of this subpart that indicates sampling point locations and monitoring to be conducted at each point. This sampling plan shall be submitted to EPA at the same time and on the same diskette as the DBP and related monitoring sampling plan required by §141.142(c)(2) and no later than eight weeks after the PWS receives the Notice of ICR Final Determination Applicability from EPA, using the procedure specified in "ICR Sampling Manual", EPA 814-B-96-001, April 1996.
- (4) All reports required by this section shall be submitted to USEPA (ICR4600), ICR Data Center, Room 1111 East Tower, 401 M Street SW., Washington, DC 20460.
- (5) The PWS shall keep all data for at least three years following data submission to EPA.

§141.144 Disinfection byproduct precursor removal studies.

- (a) TOC, UFCTOX, THM4, and HAA5 applicability monitoring. A PWS required to comply with this section shall conduct TOC, UFCTOX, THM4, and HAA5 monitoring specified in §141.141(e)(2) of this subpart. A PWS may use monitoring results from samples required by §141.142(a) of this subpart to meet this requirement to the extent that all requirements in each section are met.
- (b) Treatment study requirements. A PWS identified in §141.141(b) of this subpart shall conduct disinfection byproduct precursor removal studies (treatment studies). The treatment study shall use bench-and/or pilot-scale systems for at least one of the two appropriate candidate technologies (GAC or membrane processes) for the reduction of organic DBP precursors. The treatment studies shall be designed to yield representative performance data and allow the development of national treatment cost estimates for different levels of organic disinfection byproduct control. The treatment objective of the studies is the achievement of levels of byproducts less than 40 µg/L TTHM and

30 µg/L HAA5, as an annual average. The treatment study shall be conducted with the effluent from treatment processes already in place that remove disinfection byproduct precursors and TOC, to simulate the most likely treatment scenario. PWSs are permitted to optimize these processes or pilot additional processes appropriate for pretreatment for treatment studies. In order to minimize the formation of DBPs, the test water for both the bench- and pilot-scale tests shall be obtained from a location before the first point at which oxidants or disinfectants that form halogenated disinfection byproducts are added. If the use of these oxidants or disinfectants precedes any full-scale treatment process that removes disinfection byproduct precursors, then bench- and pilot-scale treatment processes that represent these full-scale treatment processes are required prior to the GAC or membrane process. A PWS should exercise sound judgement in its selection of treatment process to study and the point at which to obtain water for study. Depending upon the type of treatment study, the study shall be conducted in accordance with the following criteria.

(1) Bench-scale tests are continuous

When seasonal variation is not significant, as is the case in most ground waters, the quarterly tests should be run to investigate other variables, as described in the "ICR Bench- and Pilotscale Treatment Study Manual" (EPA 814-B-96-003, April 1996). The RSSCT shall be run until the effluent TOC concentration is at least 70% of the average influent TOC concentration or the effluent TOC reaches a plateau at greater than 50% of the influent TOC (i.e., the effluent TOC does not increase over a two-month full-scale-equivalent time period by more than 10% of the average influent TOC concentration) or a RSSCT operation time that represents the equivalent of one year of full-scale operation, whichever is shorter. The average influent TOC is defined as the running average of the influent TOC at the time of effluent sampling. If, after completion of the first quarter RSSCTs, the PWS finds that the effluent TOC reaches 70% of the average influent TOC within 20 full-scale equivalent days on the EBCT=10 min test and within 30 fullscale equivalent days on the EBCT=20 min test, the last three quarterly tests shall be conducted using membrane bench-scale testing with only one membrane, as described in paragraph (b)(1)(ii) of this section.

(ii) Membrane bench-scale testing shall include information on the experimental conditions and results necessary to determine the water quality produced by the membrane treatment and a preliminary estimate of productivity. The testing procedures and monitoring and reporting requirements are described in the "ICR Bench- and Pilot-scale Treatment Study Manual" (EPA 814-B-96-003, April 1996). A minimum of two different membrane types with nominal molecular weight cutoffs of less than 1000 shall be investigated. Membrane tests shall be conducted quarterly over one year to determine the seasonal variation. Thus, a total of four bench-scale tests with each membrane shall be run. If seasonal variation is not significant, as is the case of most ground waters, the quarterly tests should be run to evaluate the impact of other variables, such as pretreatment, or additional membranes could be tested. Alternatively, a

PWS may choose to conduct a long-term, single element study using a single membrane type in lieu of evaluating two membranes in four quarterly short-term tests, using the protocol in the "ICR Bench- and Pilot-scale Treatment Study Manual" (EPA 814-B-96-003, April 1996).

(2) A PWS shall conduct pilot-scale testing as continuous flow tests. For GAC, the PWS shall use GAC of particle sizstian 1tion61 memveraith nchS Mb7 014408ence-

to evaluate the impact of other variables, such as pretreatment.

(ii) Membrane pilot-scale testing

(A) The membrane pilot testing procedures and monitoring and reporting requirements are prescribed in the "ICR Bench- and Pilot-scale Treatment Study Manual" (EPA 814-B-96-003, April 1996).

(B) The membrane test system shall be designed to yield information on loss of productivity (fouling), pretreatment requirements, cleaning requirements, and permeate quality and operated at a recovery representative of full-scale operation.

(C) The pilot-scale testing shall be run for one year.

(3) Chlorination under simulated distribution system (SDS) conditions shall be used prior to the measurement of THM4, HAA6, TOX, and chlorine demand. These conditions are described in "ICR Manual for Bench- and Pilotscale Treatment Studies" (EPA 814-B-96-003, April 1996) and represent the average conditions in the distribution system at that time with regard to holding time, temperature, pH, and chlorine residual. If chlorine is not used as the final disinfectant in practice, then a chlorine dose shall be set to yield a free chlorine residual of 1.0 to 0.5 mg/l after a holding time, temperature, and pH equal to those representative of the distribution system averages.

(c) Analytical Methods. All analyses required by paragraphs (a) and (b) of this section shall be conducted using the methods and the mandatory analytical and quality control procedures contained in either "DBP/ICR Analytical Methods Manual" (EPA 814-B-96-002, April 1996) or "ICR Manual for Benchand Pilot-scale Treatment Studies" (EPA 814-B-96-003, April 1996). In addition, TOC analyses required by paragraph (a) of this section shall be conducted by a laboratory approved under the provisions of §141.142(b)(2) of this subpart.

(d) Reporting. (1) TOC and UFCTOX reporting. A PWS shall submit the monthly results of 12 months of TOC or UFCTOX monitoring required by paragraph (a)(1) of this section and the annual average of those monthly results not later than October 14, 1997. This re-

port is not required to be submitted electronically. Although a PWS may use monitoring results from samples required by §141.142(a) of this subpart to meet this requirement, it shall submit separate reports to meet this reporting requirement and the reporting requirement in §141.142(c)(1) of this subpart.

(2) A PWS shall report all data collected under the provisions of paragraph (b) of this section. In addition, a PWS shall report the information for water resource and full-scale and pilotor bench-scale pretreatment processes that precede the bench/pilot systems. These data and information shall be reported in the format specified in "ICR Manual for Bench- and Pilot-scale Treatment Studies" (EPA 814-B-96-003, April 1996) not later than July 14, 1999.

(3) All reports required by this section shall be submitted to USEPA, Technical Support Division, ICR Precursor Removal Studies Coordinator, 26 West Martin Luther King Drive, Cincinnati, OH 45268.

PART 142—NATIONAL PRIMARY DRINKING WATER REGULATIONS IMPLEMENTATION

Subpart A—General Provisions

Sec.

142.1 Applicability.

142.2 Definitions.

142.3 Scope.

142.4 State and local authority.

Subpart B—Primary Enforcement Responsibility

142.10 Requirements for a determination of primary enforcement responsibility.

142.11 Initial determination of primary enforcement responsibility.

142.12 Revision of State programs.

142.13 Public hearing.

142.14 Records kept by States.

142.15 Reports by States.

142.16 Special primacy requirements.

142.17 Review of State programs and procedures for withdrawal of approved primacy programs.

142.18 EPA review of State monitoring determinations.

142.19 EPA review of State implementation of national primary drinking water regulations for lead and copper.